NASA Contractor Report . 178391

DIAGNOSTIC EMULATION:
IMPLEMENTATION AND USER’S GUIDE

WULATION: N88-14638

(NASA~CR-178391) DIAGNOSTIC EMULATION:
IMPLEMENTATION AND USER'S GUIDE {PRC
Kentromn) 172 p CSCiL 09B
Unclas

G3/61 01164264
Bernice Becher

PRC Kentron, Inc.

Hampton, Virginia 23666

Contract NAS1-18000
December 1987

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

TABLE OF CONTENTS

Acknowledgementcceeceseetcnctncnrcnsans ceesns
1. Introduction teeesessscessressnnas ceeecens .
2. General Description ceeesusccnnas cees
2.1 Overview: General Principles and Assumptions ...
3. System Structure Ceeesreannnasnnns ..
3.1 System Flow of Controlceeieeveanccances ..

.2 Emulation Flow of Control cesecnecntanans

[S N T Y S o s A SN I N - > i = Y = S N U Y T N G T LV G Y .S
e o e s & s e e o e o s+ e = e o+ e o e ¢ o o . . e e e o

G EGES R RS
= =

P . . . o s e
S L DL WWWWWWWWWWWWWWWWwwwwwwwhioNopNoNDN =
e s e e » « e s . e e o o o o e s s

2
3
3
3
.10.3.
3
3
3
4

Implementation of Diagnostic Emulation Technique
Overview of Implementationcivvevnnnn.
Modelsiviiiiiiiiiiiiiitiiitieetttrtraannnn

.1 Gate-level Network Modeliveveennncen
1.1 Simple Gatescviiieiiierrirencnraaanans
1.2 Tri-State Devices .vveeeeeeeeeeneensennnnees
1.3 Flip-FlOPS tetvereneieroncencencossaseananns
.1.4 Event-Driven Feature Cecersecenene
.2 Functional Subsystem Model beeeeeaaannen

Data StruCtuUresciiiieeecenecennoosnnoesons
External Registers Cecresecsnenas
Network ConnectionsSeeveeeensoeeesnasons
Hardware Description Matrixcvecveveeenen
SEACKS i it iiii ittt ettt ecesecasttesennns
EVeNES .t ittt iiiieteeeneeennonsoncononnananns
PN o K o) o ¥ Ceeertecenone
Master Action Control Register
Action Control Block ...iviinnrerenneeennennns
Emulated MemOLieS ..uvveeeeeennnsoecnsenonnansa

OO UTH WN =

.10 Action Descriptionsceeeeeeeeecenasnns
.10.1 Write Memory Actioneeevvevnnneennn

Read Memory Actionceviinieinnancnn.
Operations Actionceciiennnnnnnn.
StOp RUN .. iiiiiiiiiiiitrrnnesnssnnnonns
Stick Gate at 0/1 iiiriiiiiinnnnn.
Lift Gate Fault iiiireeivnnnns.
Insert Fault in ROMviiivevennncen.
Lift Fault from ROMcevviienvennnn.
Stop Batchciiiiiiiiiiiiiiiinnennnns
External Inputs Actioncvveevveennen
External Outputs Actionc.ccvvvvun.
Algorlthms ceeeenn

e« o e PR
DU W

[
O
U"

.1 Initialization Algorithm
.2 Functional Emulation Algorithm verenen
.3 Gate-level Algorithm i ereeinnnnna.
.3.1 Description of Device "Count"

User’s GUIdeiiiteenneneeerenncesnssnnacsons
Installation of Programs Ceeesereeetteaann

—-i-

e e s e LIS

seeesessacsoce
s 00 0e0vs s a0
LAY . . L

LR A R A A N I)
es e s s 000000
®se e e 0 cess 00000
s e 0o 00 e0 0000
. s 0000 ¢ e

s o s v e .

ooooooooooooo
ooooooooooooo
.............
.............
.............

ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
ooooooooooooo
oooooooooo .

ooooooooooooo
---------- .

.............
.............
oooooooooo .

ooooooooooooo
oooooooo . .

---------- .

oooooooooo .

ooooooooooooo
oooooooooo .

ooooooooooooo
---------- .

.............
oooooooooo .

.1 Installation of Emulator on Vax (Using Vax/VMS)
.2 Installation of Emulator on QM-1
.2.1 Restore Emulation System From Tape to Disk:

w W

mmmwwmmmuu.nmu-u.nu1U'H.nu‘lfﬂmmmmu1mmmmwmmmuunmmwmmmmmmmmmmmmmmmmmmm
. . * L] - . L] L] . L] L] L] . L] L] L] . . . [] L] L]

NN

L] L] .
Ut W= NN

L] - .] [] L]
uouauau)uohau)h)h)h:u:u:u)u:hah)haham)h)bah:hauahahahAhahahahawr—ruhahakahahahaha N -
'Y] .] . . .

NN

.2
.3
.4
.5

1

. . [] . . L] . . L] .
N = N WWWWWWNONNNNDNNNNDNDNDND wwwWWNNNNNN
. .

Compile & Link Easy Programs: Vax<—>QM-1 Transfers
Generation of program to write External Outputs to Disk .
Generation of Microcode Driver cessesessssssns
Generation of Nanocode Emulator vessccccesecaas

Data Preparation cecsone ceesecnen teeseseccccnses

Suggested QM-1 Template cecteceresennas ceessse cevesnne
Setup of Functional Memoriescecceveeee teocsscas cecesse

Setup of Faults ..

Setup of External Inputscccenvveccaces cesessersstonne
Setup for Producing External Outputs cssessscasnnass

Program Modificationscveeeeececescsass ceeeccscssnsenne

Implementation of User-Defined Actioncccvevereneenes
Instructions for Increasing Array SizeScceceeceeccccos

Running the Systemcc0uevee cocssene cececscessensee

Initialization of Target Hardware on Vax ...cceceese cececns

General
Input Files
1 Netlist File .
2 Memories File

.2

.3 Initialization
.3

3

4

4

.1

.2 Initialization
.3 1Initialization
.4 1Initialization
Emulation on Vax .
General

.2 Structure of
.3 Sample Fault

External Input
.1 Contents and

L3

. .
BB B WWWW NN =

Emulation Output
.2 Stack Outputs
.3.1 Contents and

Running Emulator
External Outputs
Emulation on QM-1

Creation of QM-1
Data Preparation

.1 Sample Memories Fileccceecencercenccscconncnes .

Run-Time Options Fileccv0eees cee

.1 Sample Initialization Run-Time Options File
.2 Record Descriptions for Init. Run-Time Options File .
Device Comments Filecccceeseccscccsssasccnnccscans
.1 Sample Device Comments File ceetsssevsoncsense oo
Initialization Output Filesccevvvvcenccnnnencconas
Initialized System State Fileccc00vuue veesese oo

Text Output Filecevvevcnacnncnns
Matrix Fileccciveevencenccoccncnns
External Registers File ceeessens

ooo

Emulation Input Filesc.ceceveveccnnccssnsacsncnnnncns
Initialized System State File seseee vesseses .
Emulation Run-Time Options Filecc0000e veeesse .o

.1 Sample Emulation Run-Time Options F11e

.2 Record Descriptions for Emul. Run-Time Options File .
Fault List Filec.ciiiveenensnncncncsnnnns teescccns

.1 Contents of the Fileccc000es cesees ceeenessssaes

the File ...ccvvveeececcccnnens cesscenese
List File ...ciievveeccescncans cevessane
FileS .uvveivecnoncncnersencscsncacncosnns
Structure of External Input Files

.2 Sample External Input Filescceceucevennccnsces

Filesc.. Weessssestessenassessssona

.1 Text Output Filecc000. teccssesssscrssnsssssocnse

ooo

.3 External Output FileSceccevesescscsccssssossacnsns

Structure of External Output Files

.3.2 Sample External Output Filecccvvvevcecencans

onvax o 00000 *® e o0 00 ® 0 0 8 000 00 080
POStProcessSing ..c.ceeecscesssccsnsccnses

FileS: .vccveeeens ceessecesecse ceessens .

—ii-

.4.3 To
.4.3 To
.4.4 Vax
.4.4 Vax
4.4.

. Bibliog

Run Emulation on QM-1: ...cccececececccccscccccscancns
Send QM-1 External Outputs to Vaxccceeeeeecccesns
¢<—> OM-1 File Transfers ...ccceeesceccccccrsossssccccns

to OM—~1 TranSferS ..ccceeceececcecsovccccsvsonsasscsssss

1
2 w_l tovax TfanSfers S PP P eP PP RNLERIIPSIORIOORNLIOEISIRIOSIOESISIERIRNIOITOTS

raphy 99 0 08 000000 EPP BRI LB LLP0RNLGSERIORNLIGIOECIOEOSEISETOETS

.1 Referencesccceeecees ceecsecsccessecscesesessesncssosnessnas

List of Figures

Figure 1
Fiqure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fiqure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Appendices
Appendix A

Overall Structure of the Techniqueccccceeveee
System Flow of Controlcceceeeeencnscansscsnns
Emulation Flow of Controlcccecceeveccncccecens
Flip-Flop Model cevesscessnessssessscnsssnsane

External RegisSterscceceecececcccscccsccscccsons
Network Connectionsceseeve ceseescsesnscnsne
Hardware Description Layout cesesesesserecsesesssses
Stack ..ceeveccncones essesssssesssesssesesesesnanns

Write Memory ACthﬂ Structurecccevveesnnnsesnsns
Read Memory Action Structureccccieeveevene
Fault Buffer Layoutcecseeesceescccccccccenne
External Input Action Structureccccececceee
External Output Action Structureccco0ceeee
"Count" Initializationc.ecicveeeccecacccccnene
QM-1 Memory Templatecececeeeecercenccancocns
Sample Template for Faulting Devicecccececee
Valid Op COdeS ..cecveececccccnccccscccosansnscsccnss

Additional Fiqures cestecscssssssaannnns
Event, Free Space, and Actlon List Layouts
Event and Free Space Record Layoutscececeee
Action Control Block Layoutcccceiececcnncns
Scheduling an Eventcccceeveesecccsccncononss
Scheduling an AcCtionccceeeeseecseccccncnscnse
Flip-Flop Trigger Chartccecececececececscens
Fortran Initialization IO Unitscccceveccenes
Fortran Emulation IO Unitsccveececenccnnccnns
User Modifications for New Actioncccceeceeeee
Fortran Parameters & Variables,by Common Label
Fortran Parameters & Variables,by Variable Name ...
Flip-Flop Decision Table for QM-1 Version
QM-1 Emulator FileSeccvececesctscccnssscnnnae
QM-1 Utility Files ceesonane cescecseesnes
OM-1 Files for Transfers with Vaxce0ceeee
Device Header LayoutsScceeecececccvoscsccnnscns
Legends for Header WOrdsccceceeeeecvccncocans
Internal Connector Layouts cecesscersscssssne
Legends for Internal Connectorscecceceeecsee
External Connector Layoutscecceeeccescccrocnsnss
Legends for External Connectorsceceeecececs

-iii-

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-11
A-16
A-21
A-22
A-23
A-24
A-25
A-26
A-28
A-29
A-31
A-32

Appendix B
Appendix C
Appendix D
Appendix E

Memory Data Structures Layoutcccccececececee
Emulated Memory Layoutccccceeccccccscsssscccne
General Action Layoutccccccceesccscccscccconcs
Write Memory Actioneccceceeccccccccvccccccncs
Read Memory ACtionccccececccecccccsccecccccnne
stopAction EEEEEEREEN I N N I A A I B R R R R R IR AN RN B R R A B
%rations Action S 0 0 QO OO GO OB SOOI O GRS OO OO OOES OSSOSO
External Inwt ACtim ® 6 © 0 0 00650000000 B OO SN OSSO PSS
&ternal mtwt Action ® 9 0 6806000000 OOOOEEOPOSIESIESEISIEOESDS
Q, Qbar Flip-Flop Pair ...c.cecececcccceccccncnccce

Sample Initialization Text Output File
Sample Netlist File
Sample Emulation Text Outputs

Terms and Abbreviations

-y

A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-4]1
A-42

Acknowledgement

The author wishes to acknowledge Earle Migneault of NASA - Langley
Research Center who dreamed up the concept and the detailed design of the
Diagnostic Emulation process. The author also wishes to thank Robert Baker,
Scott Mangum, and Charlotte Scheper of Research Triangle Institute for
providing some of the examples used in this document.

Bernice Becher
September, 1987

-\

1. Introduction

In the future, computer systems will be doing more of the tasks that are
now performed by humans. The area of commercial avionics is no exception.
Sophisticated computer systems will increase their share of the tasks involved
in the control and flying of the aircraft. 1In order to make commercial aircraft
of the 1990’s more efficient and profitable, new and advanced technologies will
be used in their design and construction. Ways must be found to reduce the risk
caused by these new technologies and thus to speed their acceptance. The
Systems Validation Methods Branch in the Information Systems Division, is doing
research in order to develop methods for fully integrating guidance and control
functions, to identify system architectural concepts, and to establish a
creditable validation process for advanced digital system designs. The
contractor, PRC Kentron, is involved in this effort by providing support in the
development of software to accomplish the latter goal, namely the development of
methods for the analysis of the reliability of highly reliable, fault tolerant
digital avionics systems. These advanced digital systems must be significantly
more reliable than the systems now in use. What is generally meant by stating
that the system must be highly reliable is that the probability that a system
containing no failed components at the start of operation will fail during the
first ten hours of operation will be less than approximately 10-°. It is clear
that digital computer systems that are to be highly reliable must be fault
tolerant. Fault tolerance is the characteristic of the hardware and software
architecture which allows the system to continue operating correctly in spite of
the occurrence of physical faults, i.e., the detection of faults and the
recovery to normal operation is handled automatically by the hardware and
software and does not require manual intervention. This detection and recovery
must be carried out within a specified period of time and must be done
concurrently with the controlling of the aircraft.

Fault tolerant digital systems are implemented by first identifying the
reliability goals of the system, and then selecting and incorporating fault-
detection and recovery algorithms into the original design of both hardware and
software. The tolerance to faults is usually accomplished with redundancy of
components and algorithms which can reconfigure components in case of failures.

Once a fault tolerant digital system has been constructed, an important
problem is how to evaluate the reliability of the system. There are two
approaches to this problem. One approach is the use of analytic modeling
techniques. A second approach which can be used in conjunction with analytic
methods, is the use of emulation techniques.

This latter approach is currently being studied at the Langley Research
Center. The idea being studied is that rather than basing reliability analysis
on manufacturer’s supplied data, or on expected probability distributions of
failures of components to determine the response of a system to faults, a gate-
level representation of the system is emulated. An algorithm has been developed
to emulate any network of logic gates, flip-flops and tri-state devices. The
algorithm is independent of the particular piece of hardware being emulated. A
description of the particular target digital system is fed to a translator which
converts the description to a form which the emulator can process. The
processing of this representation of the target hardware by the software-
implemented algorithm consists of the gate-level emulation of the target
hardware. During this emulation, faults can be injected, and their effects
studied.

The particular algorithm was developed with a major objective being
conservation of host time and memory. The speed is important because the target

system must be allowed to run for lengthy time periods, and the conservation of
space is necessary because of the large number of gates, flip-flops, and tri-
state devices in any modern digital system. The algorithm employs a general
model for all types of gates, i.e., "AND", "OR", "NAND", "NOR", "NOT", "XOR",
and a single generalized model for all types of flip-flops. These general
models allow for efficient use of computer memory. Time is conserved by
processing only those devices in a given cycle whose input(s) have changed
during the previous cycle.

This algorithm allows for the insertion of faults into the system, and for
the observation of the response of the system to these faults. This allows for
controlled and accelerated testing of system reaction to hardware failures in
the target machine.

As an initial experiment, a horizontally-microprogrammable computer, the
Nanodata QM-1, was chosen as the host system. The emulation algorithm was coded
at the microcode level to take advantage of the parallel capabilities of the
host machine and to exploit the speed advantages of executing code at the most
primitive level of the host computer. All preprocessing of the hardware
description and fault-injection data, as well as all post-processing of fault
data is performed on a Digital Equipment Corp. VAX 11 which is interfaced to the
QM-1.

The emulation algorithm has been used to emulate a simplified model of a
"Toy" computer, the central processing unit of the Bendix BDX930, and the
communicator interstage unit of the Fault Tolerant Processor. Working emulators
are resident in a QM-1 computer and a Vax computer in AIRLAB, the Avionics
Integration Research Laboratory, at the Langley Research Center. These
emulators will be used as general reliability analysis tools for highly
reliable, fault tolerant avionics system. A complete and detailed discussion of
the concepts inherent in the technique is given by Migneault[2]. The remainder
of this document will describe in detail how the algorithm was implemented at
NASA/LaRC and instructions on how one goes about using the system.

2. General Description .
2.1 Overview: General Principles and Assumptions

The Diagnostic Emulation Technique is a general technique which allows for the
emulation of a digital hardware system. The technique is general in the sense
that it is completely independent of the particular target hardware which is
being emulated. A description of the hardware to be emulated is presented to
the emulation program in the form of input data.

The technique is a hybrid one in that parts of the system (the network) are
described and emulated at the logic or gate level, while other parts of the
system (the functional subsystem) are described and emulated at the functional
level in order to save time and unnecessary complexity. It is up to the user
of the emulation program as to which parts of his system are to be emulated at
the gate level and which parts are to emulated at the functional level.

The network to be emulated at the gate level consists of a set of devices
(gates, flip—flops, and tri-state devices), and a set of connections among
these devices.

Each input and output to or from a device may assume one of two values, namely
high (represented by 1) or low (represented by 0).

The basic unit of time(t) used by the emulator is the time it takes for the
input signals on a logic device to be propagated through to the output of that
device. It is assumed in this technique that the propagation time for all
devices in the network is the same and remains constant throughout the
emulation. This is not an inherent limitation of the diagnostic emulator,
although unit delay is assumed for this implementation.

The technique allows for a very flexible method in which the gate-level network
and the functional subsystems can communicate with each other. This method
also allows the user to define any type of subsystem he wishes as long as he
can describe it in terms of a data structure and a subprogram module that
operates on the data structure and optionally also operates on the gate level
network.

The state of the entire system at any given time consists of state descriptions
of all logic devices in the network, state descriptions of all connections
among devices, and a state description of the functional subsystem. The
emulator must have given to it at t=1 the initial state of the entire system.
The emulation then consists of a series of iterations, one for each time step.
Given the current state of the system at time T, the emulator calculates the
new state of the system at time T+l. It continues these iterations until it
reaches the stop time specified by the user.

The emulation technique is event-driven in the sense that for a given
iteration, only those logic devices are processed whose output values have
changed during the previous iteration.

Important functional capabilities which have been incorporated into the NASA
LaRC implementation are: the ability to insert and/or remove stuck-at faults
at user-specified times into the logic gates and/or into the ROMS, the ability
to input to the digital logic at user-specified times from sources external to

the simulation, and the ability to output from emulated logic to sources
external to the emulation either at user-specified equally spaced time periods

or at times controlled by the internal logic.

The technique and its concepts

are basically independent of any particular implementation. All of the

characteristics which have been describeéd above are general concepts of the
technique and are independent of any particular implementation. The overall
structure of the technique is depicted in Figure 1.

Initialize
System

¢

Initial
System
State

i

> Perform
one

Emulation

Iteration

T

4

New
System
State

Stop

Program Ste
[oo e
L] pata File

Overall Structure of the Technique

Figure 1

3. System Structure

The emulation system as it has been implemented at NASA/LaRC consists of
two parts. The first part is the "Initialization" system which calculates a
consistent initial state for the target hardware and generates this initial
hardware state in the binary form required by the second part. Part 2 is the
emulator. The emulator begins with the initial machine state and performs the
emulation as per the user’s specifications.

The initialization program requires as input a description of the gate-
level network in the Diagnostic Emulator Netlist Format (DENF), and a list of
the initial contents of any memories being emulated at the functional level, in
the Diagnostic Emulator Memories Format (DEMF). The Initialization Program is
described in detail in Section 5.4.1. It is the user’s responsibility to
provide these two required inputs to the initializer in the formats required.
It is thus necessary for the user to provide some sort of "preprocessor" to
generate the netlist in DENF format and the memories in DEMF format. To date,
two preprocessors have been developed to provide these descriptions to the
initializer in the required format. The first was developed at NASA for the
CYBER computers in the Analysis and Computation Section and uses a NASA-
developed netlist language for its input. The second preprocessor was
developed by the Research Triangle Institute(l] and uses Futurenet as its input
language.

This document does not include any discussion of preprocessors. A
complete description of the DENF and DEMF formats is given in Section 5.4.1.2.
Thus a user can generate his own translator or preprocessor to translate from
the language of his network description and from his memory format to the
required formats.

The initialization program produces the complete network description and
the memories’ contents in the binary form required by the emulator. 1In
addition, the initializer calculates (if possible) a consistent initial state
for the entire system.

The emulator then uses the initial machine state generated by the
initializer together with other user-supplied information to perform the
emulation.

3.1 System Flow of Control

The overall program and data flow for the preprocessor, initializer, and
emulator are shown in Figure 2. The general idea is that for a given target
machine to be emulated, the preprocessor and initialization systems need be run
once (or several times if errors or inconsistencies exist), i.e., until the
system is successfully initialized. At that point the initial state of the
system has been saved in a binary form for the emulator, and the emulator can
be run as many times as desirable, varying its inputs, without having to rerun
the preprocessor or initialization systems.

System Flow of Control
Figure 2

—6-

Target Memory Network Description
Contents in some
in some form form
J 4
Some
Preprocessor
I
| 1
3 4
Comments Memory Contents| |Netlist File| |[Initialization
File File(DEMF) (DENF) Options File
|
|
J $
Initialization||<
Program —_——— - - - >|Debug File
{
| I |
I I I
i i { $ {
Initial| |Device| |Externals Text Matrix Template
System List for Output for for
State by QM-1 QM-1 Comments
File Name File
External Runtime Fault
Inputs Options File
| |
J J J
> Diagnostic Emulator
H
1
I I
3 4 4
External Text Control Store Main Store
Outputs Output for QM-1 for QM-1
———— Required 1/0 ~ = - Optional 1,0
D:D Ptogram step : Data File

e

<

&~
&

ZOHHEYPNHEDPHMEMHMZN QZHOHNUEOOKYEXNY

4 » 0 d =B ™

-

o]

3.2 Emulation Flow of Control

One of the user-supplied inputs to the emulator is the "Fault File". The
data in the fault file controls the emulator. All the data in one fault file
is referred to as a "Batch". The fault file consists of any number of
individual fault lists, each of which causes one "Run" to be executed. A "Run"
is an emulation which begins at time t=1 and continues until a user-specified
stop time. An individual fault list describes when and what kind of faults are
to be inserted for the run, and when the run is to stop. Each run in the batch
begins by re-initializing to the initial state as defined by the initialization
program. Each run makes use of the same external inputs file. The differences
from one run to another within the same batch are caused by the different fault
list for each run. The fault file is described in detail in Section 5.4.2.2.3.
The batch is completed when all fault lists have been processed, or in other
words, when the last run has completed. In summary, a batch consists of many
runs. For each run the gate-level network and the functional subsystems are
the same. The initial state of the machine and the external inputs are the
same. The faults injected and the stop time may vary for each run. The flow
of control during which the emulator processes one batch is shown in Figure 3.

Start

T
4

Initialize Batch
(do total restore of initialized system)

T
4

(do partial restore of initialized system)
If first run this batch, get user run parameters

T
4

Schedule all initial events for this run

T
+

Do First Functional Emulation
for this run

4

>| Do Gate-level Emulation
for this time

$

Reverse Stacks

|
4

Increment time

T
{

¢<———Do Functional Emulation
for this time

4

Do End-of-Run Processing
|

(more runs) | (no more runs)
i

Stop

Emulation Flow of Control
Figure 3

4. Implementation of Diagnostic Emulation Technique

4.1 Overview of Implementation

The Nanodata QM-1 computer is a high-speed general-purpose digital
computer. It was chosen for the first implementation of the Diagnostic
Emulation Technique because at the lowest level it is horizontally
microprogrammable. See the QM-1 Hardware Level User’s Manual[3] for a detailed
description of the QM-1 architecture. It should be noted that the QM-1 at
NASA/LaRC contains three levels of memory. At the highest level is the main
store memory which consists of 500K of 18-bit words. The control store memory
consists of 40K of 18-bit words. At the lowest level is the nanostore which
consists of 1K of 360-bit words. Microcode is stored in the control store,
while nanocode is stored in the nanostore.

The emulator was implemented on the QM-1 as follows: The algorithm which
emulates the gate-level logic was written in nanocode at which level the
primitives of the QM-1 hardware are controlled in a parallel manner, i.e.,
during each t-step of the QM-1 many different nanoprimitives may be executed
simultaneously. The QM-1 has a nanoassembler which was used to assemble the
nanocode which implements the gate-level emulation algorithm. The algorithm
which performs the functional parts of the emulation was written in microcode
(on the QM-1, each microcode instruction is carried out by a sequence of
nanocode instructions and is therefore one level higher than nanocode). The
microcode language used was "Multi", and the functional algorithm or "Driver"
was assembled with the Microcode Assembler. Two new microcode instructions,
namely "Emul" and "Iemul" were defined as extensions to the "Multi" language,
and when used in the Driver, cause the appropriate parts of the nanocoded gate-
level algorithm to be executed. "Iemul" causes the initialization of the gate-
level data structures to be carried out, and "Emul" causes one time period or
one stack of the gate-level network to be processed. Both of these multi-
extension codes then appear as instructions in the microcoded Driver. The
nanocode and microcode are combined into an executable form as described in
Section 5.1.2.

The front end program for the emulator, namely the Initialization program,
was written for the Vax 11 in Fortran. Because of the need to check the
results of the QM-1 emulation, an emulator was also written in Fortran to run
on the Vax. The Vax emulator was naturally much simpler to write than the QM-1
emulator but runs about 36 times slower than the QM-1 implementation. The
result is that the user now has two options as to how he will run the emulator.
He must run the Initializer on the Vax, but then has the choice of whether to
do the actual emulation on the Vax or on the QM-1. The user must weigh the
disadvantage of the added complexity of using the QM-1 against the advantage of
the gain in speed. It should be pointed out that the QM-1 emulator was
implemented first, and that the Vax emulator was written to conform to the QM-1
18-bit word, and has basically emulated the control store and main store of the
oM-1.

4.2 Models
4.2.1 Gate-level Network Model

Any network to be emulated at the gate level consists of a set of gates, flip-
flops, and tri-state devices, and a set of the connections among these devices.
Any input or output to or from a device may assume one of two values, namely
high (represented by 1) or low (represented by 0).

4.2.1.1 Simple Gates

A gate may be any of the following types: AND, NAND, OR, NOR, NOT, XOR, NXOR.
Normally, a simple gate is enabled; however, the faulting of a gate (output
stuck at 1 or 0) is implemented by disabling the gate.

4.2.1.2 Tri-State Devices

A tri-state device is any of the simple gates listed above, but in addition has
an enable/disable input. The internal value (namely the output value
consistent with the inputs) of the tri-state device is always kept current,
but if the device is disabled, its internal value will not be propagated to its
output line, but rather its output line will be stuck at either 0 or 1 (the
value chosen by the user in the netlist for that particular tri-state device)
until the tri-state is enabled.

4.2.1.3 Flip-Flops
A general model for a flip-flop is used by the algorithm. Note that a flip-

flop is not modeled at the gate level. The general model for the flip-flop is
as shown in Figure 4.

P preset
CTL C clear

T clock trigger
>|J Q|———m> L latch

J input 1

>|K K input 2

D D connection!
R indeterminant flag 12
U indeterminant flag 22

! A "D" connection is merely one in which the K input is always
the complement of the J input.
2 See A-29, Legends for Internal Connectors,
A-6, Flip-Flop Trigger Chart, and Migneault[2]

Flip-Flop Model

Figure 4

By using these lines appropriately, all of the useful edge-triggered types of
flip-flops can be modeled, as described by Migneault(2]. Note that this model
accomodates only one output, namely the Q output. If the QBAR output is

desired, it can be obtained by adding an additional flip-flop with the inputs

~10-

reversed from those of the Q flip-flop. See A-42 for an example of a Q, QBAR
flip-flop set. The preset and clear lines for all flip-flops in a network can
be active high or active low, as defined by the user. Note, however, that all
flip-flops in a network must be either active-low or active-high. The clock
trigger for each flip-flop can be either upward edge-triggered or downward
edge-triggered, again as specified by the user. In this case, however, the
choice for each flip-flop is individually controlled. For each device in the
network, a data structure exists which at all times reflects the state of that
device.

4.2.1.4 Event-Driven Feature

The emulator technique is event driven; that is, during each time period a
given device will be processed only if a specific event has occurred during the
previous time period, namely that device'’s output value has changed. Any
device whose output value did not change during the previous period need not be
examined since it cannot affect any other device.

4.2.2 Functional Subsystem Model

Any subsystem which is to be emulated at the functional level is
implemented with a data structure (called an action data structure)
representing its state at any given time, and with an action subroutine module
which performs the specified function. Some examples of functional emulations
which have been implemented on this system are ROMS, RAMS, fault injection and
removal, external inputs to the network, and external outputs from the
network.

In order to implement functional emulation, event scheduling is used.
while the gate-level network emulation is synchronous in the sense that at each
time interval the devices are processed whose output values changed during the
last time step, the functional emulation is asynchronous in that functional
events do not necessarily occur at fixed time intervals and therefore must be
scheduled. To provide for this, two data structures are used. An event list
contains all events currently scheduled to be executed at specific times, and a
free space list contains a list of memory slots currently available for use by
the event list. Because the number of scheduled events grows and shrinks,
there is dynamic allocation of space between the two lists, i.e., space is
taken from and returned to the free space list according to the space
requirements of the event list. Each event scheduled points to the head of an
action list. Each action in that list is to be executed at the time specified
in the event. »

-11-

4.3 Data Structures

4.3.1 External Registers

In general, external registers are used when data is to be communicated
between the gate-level emulation and the functional emulation. The user may
direct that the emulator set up a block of contiguous external registers in
control store and/or a block of external registers in the main store of the QM-
1. Each external register is an eighteen-bit word in the QM-1 memory. Each
block of external registers, no matter where it may be in the QM-1 memory, for
the user’s purposes, is labeled beginning with register number 1, and the rest
of the block is numbered consecutively.

An external register can receive its value in two different ways. The
user can specify in the netlist that the output of any particular device in the
network feed into any bit(s) in one or more external registers. Thus during
the emulation the bit in the external register at all times is a copy of the
output line of the associated device. This is a technique for collecting in
one contiguous group of bits in the QM-1 memory, the output values of any
selected set of devices. This use is shown in Figure 5.

An external register can also receive its value from the functional
subsystem emulation during the execution of an "action", and typically could
then be used by any other action. An example of the use of external registers
is the data and address registers used in the implementation of memory reads
and writes. See Figures 9 and 10 for illustrations of these uses.

device x device y device w device z
< < L] - L] <
| 1 < - L I
I Ll Bit Positions {

171 16| 15} 14| 13| 12} 11] 10| 9| 8| 71 6 S| 4] 3] 2| 1] ©

External Register

Figure S

4.3.2 Network Connections

There are two types of connections within a gate-level network, namely
internal connections and external("pseudo”) connections. An internal
connection is one which goes from the output of a network device to the input
of a network device which may be the same device as the source device or a
different one. In any case, both the source and destination of an internal
connection are devices within the network. In the case of an external
connection, the source is a device within the network, but the destination is

-12-

an external register in that it does not exist within the network being
emulated, but is a register in the QM-1 created as a means for implementing the
functional part of the emulation. An external connection is then one which
goes from the output of some device in the network to a specified bit in some
external register. Once this connection is set up in the netlist, then during
the emulation the bit in the external register at all times is a copy of the
output line of the associated device. Thus this is a technique for collecting
in one contigquous group of bits in the QM-1 memory, the output values of any
selected set of devices. External register connections are defined by the user
in the netlist and may be used for any functional subsystem desired. To date,
they have been used to implement memory reads and writes by emulating the data
and address registers and for external inputs and outputs, again by serving as
the data registers. They are also used in memory reads and writes and external
outputs by holding the values on the control lines which then are used to
trigger the particular action. Figure 6 shows diagrams of both types of
connections.

-13-

Internal 'Cbnnectlon

:Device x : >: Device y :

essossescseoe oescoeenvsses

External Connection

.Device x .

seescsesccce

17] 16| 15} 14| 13| 12 11| 10f 9| 8 7] 6| 5| 4| 31 2| 1] O

External Register

Network Connections

Figure 6

4.3.3 Hardware Description Matrix

The hardware description matrix is a binary representation of the entire
network of devices and interconnections among the devices. This description of
the network of gate-level logic is represented in the control store of the QM-1
by a set of Device Records, each record representing one device in the target
network. A device can be a gate, flip-flop, or tri-state device. The device
records need not be in any particular order.

Each device record is made up of exactly one Header Word, followed by one
or more internal connector records, followed by zero or more external connector
records. The Header Word fully describes the state of the device at any given
time. The format for a particular Header Word varies depending on the type of
device. The formats for the various types of devices is shown in A-25. An
internal connector record describes a connection from the output of this device
to the input of another device in the network. An external connector record
describes a connection from the output of this device to an "external register"
which is pseudo in that it does not exist in the real target network, but is
used for implementation of functional emulations. The components of a device
record must be in the order stated above, and they must be contiguous. The
connector records for a particular device may be in any order, and the pseudo
connector records may be in any order. The overall structure of the Hardware
Description Matrix is shown in Figqure 7.

-14-

Control Store

Device Record1 | = - - - - - >»
| Device Header Word

Device Record 2
| Internal Connector Record 1

| .
Device Record 4 .

Device Record 3

. Internal Connector Record j

| Internal Connector Record m

Device Record i -—-=>
| External Connector Record 1
| External Connector Record 2
| .
- I
Device Recordn | = - - - - - >> | External Connector Record p

(Layout for target with a total of n devices, device i has m internal
connections and p external connections)

Hardware Description Layout

Figure 7

4.3.4 Stacks

The emulator gate-level technique is event driven; that is, during each
time period a given device will be processed only if a specific event has
occurred during the previous time period, namely that device’s output value has
changed. Any device whose output value did not change during the previous
period need not be examined since it cannot affect any other devices. The
method used to efficiently implement this event-driven capability is the
maintenance of two stacks. At any given time, one stack is identified as the
"c" stack, and the other is referred to as the "cbar" stack. During each
time period, the list of devices which changed during the previous period is
known as the c stack. The emulator takes one device at a time, namely the
source device, off the c stack and processes it. For each source device, it
examines each destination device into which this device feeds, as it is a
possible candidate for a change in output value this time period. If the
destination device does not have a change in output value, the emulator
proceeds to examine the next device into which the source device feeds. If the
output value of the destination device does change, it is added to the list on

-15-

the cbar stack. Thus it can be seen that at the end of this time period, the
cbar stack contains a list of all devices whose output values have changed
during this time period. A device placed on the cbar stack may have changed
output value an even or odd number of times during this time period. If it
changed an even number of times, it is not processed during the next time
period. As part of the initialization for the next time period, the time is
incremented by one, the cbar stack now becomes the c stack, and the previous c
stack becomes the new cbar stack, and is cleared, to be built up again during
the new time period. Thus it can be seen that the program is always reading
the ¢ stack and writing the cbar stack, and also that the identity of the two
stacks reverses itself each time period. It has been observed that for any
given time period, only a very small percentage of the devices in a network
need be examined.

At the start of each emulation run, stack ¢ must contain the device
identifiers for all devices whose output values changed during the previous
time period, namely t=0. At the end of processing for the first time period,
stack cbar contains the device identifiers for all devices whose output values
changed during this first period. The stacks are then reversed after each time
period. The identifiers on the stack are not in any particular order. The
program maintains a pointer to the base and top of each stack. Each stack
grows upward to a higher control store location, i.e., as a device is added to
the stack, it is pushed onto the top of the stack and the top of stack pointer
is incremented. As each device is processed, it is popped off the top of the
stack, and the top of stack pointer is decremented. At the beginning of each
run, stack ¢ must contain at least one device identifier, and stack cbar
contains no identifiers. Figure 8 shows the general structure of a stack
beginning at control store location x and containing n devices:

control store address contents
x device identifier <——— Base of stack
x+1 device igentifier
x;n-l device identifier <-—— Top of stack
S t a ¢ k
Figure 8

4.3.5 Events

Events which are emulated at the functional level must be scheduled
because they do not necessarily occur each time period. To implement this
scheduling of events, two singly-linked lists are used, namely the event list
and the free space list. Both lists are maintained in the control store of
the OM-1. A pointer to the head of each list is also maintained in control
store. Each element in the event list is a record consisting of three words.
The first word contains the time at which the event is to be executed or

-16-

emulated. The second word contains a pointer to the next event in the event
list which is to be executed at some time greater than the time for this event.
The links in the event list are maintained so that the list is always in
ascending time sequence. The last event in the event list contains a null (0)
pointer in the second word. The third word in the event list is a pointer to
the first action in control store which is to be executed at this time. The
actions are also maintained in a singly-linked list, so that many different
actions may be executed at one specified time. An action list is in the
reverse order to that in which the actions were scheduled. The format for the
event list data structure is shown in A-2, and a diagram showing the event list
as it relates to the free space list and the action list is shown in A-1.
Scheduling of events and actions is shown in A-4 and A-5 respectively.

4.3.6 Actions

Each unique functional subsystem is implemented through the use of an
"action". An action is composed of an action subprogram module, an action data
structure, and optionally other data structures required for the particular
action. 1In general, when the time period occurs for which the action has been
scheduled, the specified action subprogram is given control, and it "executes"
the action by making use of the corresponding action data structure(s).

There must be in the QM-1’s control store memory one action record for
each unique action be performed. The number of words in each action record
varies according to the type of action; however, each action record contains at
least three 18-bit words. The format of the first three words is the same for
all actions. The remaining words, if any, vary according the action.

At any particular time, an individual action is scheduled to be executed,
or not, as indicated by the "scheduled" switch in word 1 of the action. If it
is not scheduled, it is not linked into any of the action lists. 1If it is
scheduled, the appropriate pointers link it into the action list for the event
scheduled for the time at which this action is to be executed.

The importance of the actions feature in the scheme of the diagnostic
emulator cannot be overemphasized. Associated with each action data structure
must be a subroutine module which is to be called when the time period is
reached for which the action has been scheduled.

To date, six different action subprograms are available to the general
user of the emulator. These actions are: write to memory, read from memory,
stop run, "do operations", do external inputs, and do external outputs. Each
of these actions is described in detail in Section 4.3.10. 1In addition to
these supplied actions, the fact that the user can write as many of his own
actions as desired is the feature which makes the emulator so flexible. The
implication is that any functional emulation which can be written in subprogram
form by the user can then be used in conjunction with the gate-level emulation.
Thus it is possible for an action written by a user at the functional level to
actually access and/or modify the state of the gate-level network. It should
be noted that there is not necessarily a one-for-one mapping between the action
data structures and the action subprograms. Typically, there may be many
action data structures associated with one subprogram. For example, there is
one read action subprogram, but there must be one memory control block, one
emulated memory, and one action data structure for each ROM or RAM to be
emulated. The subprogram performs the actual read action but the action data
structure specifies the location of the memory to be read, the size of the
target word, the locations of the data and address registers, etc. In other
words, the subprogram is general for most reads, but the action data structure

-17-

is specific to the memory. It is usually possible for all the memories to make
use of the same read memory subprogram. The same is true for the write memory

subprogram.
4.3.7 Master Action Control Register

For each target emulation, one external register, namely the "action
control register" must be designated to control the triggering of any actions
associated with functional subsystem emulation. The high-order bit of this
register is the master action control bit for all actions. Each device which
controls the triggering of an action should have an external connection into
the high-order bit of the action control register, in addition to having an
external connection into some control bit in the action control block. For
each time period, the emulator checks the high-order bit of the master action
control register. If it is on, the emulator knows there is at least one action
to be scheduled, and proceeds to check all the bits in control bit words of the
action control block. For each bit in the control bit word which is on, the
appropriate action is scheduled. On the other hand, if the high-order bit of
the master action control register is off, the emulator knows that no actions
are to be scheduled and need not check the individual control bit words of the
action control block.

4.3.8 Action Control Block

For all functional subsystems (actions), a set of action control blocks is
allocated in the control store of the QM-1. Each block will contain one or
more action control records. There is one action control record for every
eighteen action control lines. An action control record consists of one word,
referred to as the "Control Bits" word, to represent the values of the eighteen
control signals (this word is actually a "pseudo" register which is fed by
appropriate devices in the netlist), and two additional words for each control
line. The last action control record may not actually represent a full
eighteen control lines, but the full amount of storage (37 words) is allocated
in any case. The data structure for an action control block is illustrated in
A-3. Note that words 1 through 37 will be repeated contigquously until all
action control lines for which actions can be scheduled have been accounted
for.

When the emulator has determined that the master action control bit is on,
it proceeds to check each bit in the "control bits" word. When it finds a bit
that is on, it accesses the appropriate two words in the action control record
for the address of the corresponding action and the appropriate delta time. It
then schedules the action whose address it has accessed to be executed at a
time equal to the current time plus the delta time it has accessed.

4.3.9 Emulated Memories

A contiguous block of main store in the QM-1 is allocated for each ROM or
RAM to be functionally emulated. Each QM-1 main store word contains eighteen
bits. The number of QM-1 words necessary to represent one target memory word
depends completely on the number of bits in the target word. If the target
word has 18 or less bits, then only one QM-1 word is needed for each target
word. In any case the target bits are stored in the QM-1 with the highest
order target bits stored in the high order bits of the lowest QM-1 address
used. The target word may be stored in the QM-1 either right or left

-18-

justified, as determined by the user. It is not necessary for two or more
memories to be contiquous to each other in the QM-1, but within one memory, all
OM-1 words are contiquous. See A-33 for a layout of the memory data structure
and A-34 for the Emulated Memory Layout.

4.3.10 Action Descriptions
Following are descriptions of the actions which have been implemented to date:
4.3.10.1 Write Memory Action

The write action is used to write a word from a data register to a target
word in ROM or RAM. See A-36 for the Write Memory Action Data Structure
Layout. The action is scheduled when the controlling device transitions from
low to high. The action is scheduled at a time equal to the current time plus
the delta time in the second word of the write action data structure.

When the current time reaches the scheduled time, the write action is
executed. The emulator reads the emulated address register and shifts the bits
the appropriate amount to right-justify the target address. Next it checks
this address against the low and high valid target addresses in the seventh and
eighth words of the action data structure. If the address is not within this
valid range, a message is outputted, and the program aborts. If the address is
valid, the actual QM-1 address for the target word is calculated as:

QM-1 address = relocation constant +
target address * number of QM-1 words per target word

(The number of QM-1 words per target word is obtained from the first word of
the action data structure, and the relocation constant is obtained from the
fourth word of the action data structure). The program then reads the data
register as pointed to by the sixth word of the write action data structure.

It then stores the data from the data register into the QM-1 address as
calculated above. This procedure is repeated for all QM-1 words representing
the one target word. Fiqure 9 is a diagram of a write memory action structure.

-19-

Device A Device C

| |

| Device B | Device I

| | | | (external connections)
3 3 3 3

Address Register

|
| (address used by
write action)

* + t

| | | (data written to memory

| | | from data register by write action)
l l |

Data Register

+ T +
| | | (External Connections)

| | |
Device X | Device Z

Device Y

Write Memory Action Structure

Figure 9

-20-

4.3.10.2 Read Memory Action

The read action is used to read a word from a target ROM or RAM. See A-37
for the Read Action Data Structure Layout. The action is scheduled when the
controlling device transitions from low to high. The action is scheduled at a
time equal to the current time plus the delta time in the second word of the
read action data structure.

When the current time reaches the scheduled time, the read action is
executed. The emulator reads the emulated address register and shifts the bits
the appropriate amount to right-justify the target address. Next it checks
this address against the low and high valid target addresses in the seventh and
eighth words of the action data structure. If the address is not within this
valid range, a message is outputted, and the program aborts. If the address is
valid, the actual QM-1 address for the target word is calculated as:

QM-1 address = relocation constant +
target address * number of QM-1 words per target word

(The number of QM-1 words per target word is obtained from the first word of
the action data structure, and the relocation constant is obtained from the
fourth word). The program then reads the appropriate QM-1 address to get the
new data. It then compares this new data, bit by bit, with the old data in the
data register pointed to by word six of the action data structure. 1In each
case, if the bit in the target word just read agrees with the bit in the data
register, no action need be taken; however, if the bits are different, then the
device in the network (as specified in the appropriate word in the action data
structure) to which this bit feeds is enqueued on the stack. This procedure is
repeated for each bit in this word, and then the entire procedure is repeated
for all QM-1 words representing the one target word. Each word of the data
register is then updated to represent the data just read from the target
memory. It should be noted that for a read memory action, the devices into
which the bits in the data register feed must be simple gates. Figure 10 is a
diagram of the read memory action structure:

~21-

Device A Device C

|
Device B | Device I

I
| | | | (external connections)
i $ ¢ 3

Address Register

(address used by
| read action)

Memory

| | |

| | | (data sent from memory to
| | | data register and devices
$ ¥ $ by read action)

Device X Device 2
Device Y

Read Memory Action Structure

Figure 10

-22-

4.3.10.3 Operations Action

The “"Operations Action" was created to allow the user to control, at run
time, when and how certain functionally emulated "operations" are to be
performed. See A-39 for the action data structure used for the operations
action. Each valid operation has been assigned a particular operation code.
To date, the valid operations codes are:

Code Operation

stop run

stick gate at 0
stick gate at 1
lift gate fault
insert fault in ROM
lift fault from ROM

NSO e Wi

For each batch job, these operations are specified by the user in the Fault
File. See Section 5.4.2.2.3 for a detailed discussion of the fault file. The
"operations action" is the method used for implementing these valid operations
at the properly scheduled times. The implementation works as follows: At run
time, the fault file for the entire batch is read and converted to the "fault
buffer" which is stored in the main store of the QM-1. For each op code in the
fault file, the user has specified a time at which it is to be scheduled, and
possibly other parameters, depending on the particular op code. In the control
store of the QM-1, are maintained two pointers. The first(pl) points to the
first word of the fault buffer and remains unchanged for the duration of the
batch execution. The second pointer(p2) always points to the next entry in the
fault list to be scheduled. For each run in the batch, the operations must be
entered in the fault list in ascending time sequence. During initialization
for each run, the emulator schedules the first operation for that run. Wwhen
the emulator reaches the time period at which at least one operation has been
scheduled, it executes all actions which have been scheduled for that time. It
then adjusts pointer p2 appropriately and schedules the next operation. Since
each run must have a "stop run" as its last operation, this is the manner in
which multiple runs are carried out for each batch. Figure 11 shows the fault
buffer format.

—23-

Control Store - Main Store

Pointers Fault Buffer
pl > op code
p2 time

> .
Fault Buffer Layout
Figure 11

Following are descriptions of the op codes which have been implemented to date.

4.3.10.3.1 Stop Run
When a "stop run" is executed, a switch is turned on which causes the main
program to terminate processing for that run.

4.3.10.3.2 Stick Gate at 0/1

For the purposes of sticking and lifting stuck-at faults from gates, a
dummy gate must be added by the user as the last gate in the network. See
Section 5.2.3. When any gate, say gate X, is faulted, the program dynamically
creates a temporary connection from the output of the dummy gate to the enable
input of gate X, sets this line to "disabled", and simultaneously sets VDIS
(see A-29) in the connector word to the value at which the gate is to be stuck.
This causes the gate to be disabled, and its output equal to VDIS, in essence
causing the gate to be stuck at the desired value, until a "lift gate fault"”
operation is scheduled for that gate.

4.3.10.3.3 Lift Gate Fault

In order to lift a gate fault, the connection that was established between
the dummy device and device X when the gate was faulted, is removed, and the
gate is thus enabled and its output will again reflect its inputs.

4.3.10.3.4 Insert Fault in ROM
The user specifies the number of the ROM, the address and the bit position
to be faulted. The emulator merely complements the bit which is to be faulted.

-24-

4.3.10.3.5 Lift Fault from ROM _

Again the user specifies the number of the ROM, the address and the bit
position from which the fault is to be lifted. The emulator merely complements
the bit, thus returning it to its correct value.

4.3.10.3.6 Stop Batch

This operation is unique in that it may not be specified by the user. The
program automatically adds a "stop batch" code at the end of the fault buffer.
When it is executed, a switch is set which causes the main program to terminate
execution of the entire batch.

4.3.10.4 External Inputs Action

The emulator contains a feature which allows the user to request that
inputs generated externally from the emulation be inserted into network devices
internal to the emulation, at specified times. This feature is implemented
with the external inputs action. For a given batch, a user may specify any
number of external input sets, or he may request none. Each set corresponds to
a particular set of devices in the network. Each set consists of a set of
contiguous input data bits coming from an external source to be inserted into
the set of specified devices in the internal logic network. The user decides
how he wishes each set to be composed, i.e., for each external input set, he
decides into which group of devices in the network and in which order the
external inputs are to be fed. He also specifies at what times these input
signals should be inserted. For each external input set that is specified, a
separate external input file must be generated by the user before the emulation
begins. This file contains a list of external input items. Each item consists
of a time at which the data is to be inserted into the devices and the data (a
contiguous set of 1’s and 0’s) which is to be inserted at the given time into
the given devices. For a given batch, the same external input data is used for
each run.

During batch initialization, the program reads the external input files
and creates in the QM-1 main store a contiguous list of the data from these
files, where this list consists of a sublist for each external input set.

These sublists are re-used for each run, so that, for a given batch, the same
external inputs are used for each run in the batch. The program also creates
an external input action for each one of these sets. A pointer to this main
store list is put into the appropriate action. The program also sets up a
contiguous set of address and data registers for each external input set. For
the purposes of setting up these structures, the user supplies to the
initializer the address of the control store location for the first external
inputs action data structure, the control store address for the first data
register and the control store address for the first address register
associated with the external inputs action.

The external inputs action is implemented in a manner similar to the read
action, except that it is not triggered by a control line, but rather by the
current time reaching the time specified in the external inputs file. Also,
the external inputs action automatically increments the appropriate address
register to point to the next data item and also schedules the next external
inputs action for this set. The action data structure as well as the data
registers and address registers needed are created by the program, and are
basically transparent to the user, with the exception that he must specify
where in the memory of the QM-1 these data structures will be placed. The
first external inputs action for each external inputs set is scheduled at the

-25-

beginning of each run, and then immediately after any external input action is
executed, the next one in time sequence for that run is scheduled.

Por each set, the user supplies the name of the associated external inputs
file, the number of bits in the data, and the names of the devices to which the
data feeds. These devices must be single input gates or single-input tri-
states, i.e., for a regular gate there must be no input to the gate other than
this external one, and for a tri-state, there must be no input other than the
enable/disable line. Figure 12 shows the structure for the external inputs
action.

-26-

Control
Store

address register

for set 1

address register

for set 2

Main Control
Store Store
action data
< I— structure >
external for set 1 |j——
inputs >
list |
for ——|action data |——
set 1 structure |—
for set 2
— - >
external |«
inputs
list
for .
set 2 .
. action data |— >
. structure —
for set n
>4
external | ¢(—
inputs
list
for
set n
-

address register
for set n

data
for

register
set 1

data
for

register
set 2

data
for

register
set n

External Inputs Action Structure

Figure 12

-27-

4.3.10.5 External Outputs Action

The emulator contains a feature which allows the user to request that the
output signals from specified devices in the network be recorded or "externally
outputted” at specified times, and in specified groupings. This feature is
implemented with the external outputs action. For a given batch, a user may
request any number of external output sets, or he may request none. Each set
corresponds to the output signals from a specified set of devices in the
netlist. For each external output set that is requested, a separate external
output file will be written at the completion of the batch. The user decides
how he wishes each set to be composed, i.e., for each external output set, he
sets up a group of external data register(s] into whose bits he feeds the
signals he wishes to output in whatever order he wishes them to be arranged.

He also specifies at what time periods these output signals should be captured.
They can either be captured automatically at reqular time intervals, or the
capturing of data can be triggered by logic internal to the network. Thus when
the batch is completed, each external output file will contain one record or
entry for each time the external output action was triggered. Within this
record will be the time at which the data was captured and the data itself. As
an example, if the target hardware contains an accumulator whose contents the
users wishes to track, he would feed the devices representing the bits of the
accumulator into external register{s] and would use these external register(s]
to create an external output file. By reading this external output file, he
would see at specified times the contents of the accumulator. Note: for one
external output set, all the bits in the external registers to be outputted
must be contiquous and can occupy more than one QM-1 word; however the bits for
one external output set (the data register[s]) do not need to be contiguous
with the bits for a different external output set.

The implementation for an external output set is done as follows: During
batch initialization, the program reads all the data necessary to create an
external outputs action for each external output set. The emulator sets up the
necessary action data structure for each external output set requested. The
appropriate pointers are put into the appropriate action. The program also sets
up a contiquous set of address registers, one for each external outputs set.
The program automatically maintains the address registers, but it is the user’s
responsibility to maintain the data register for each external output set. The
initializer reads the control store location for the first external outputs
action, and the control store address for the first address register. For each
set, the emulator reads the number of bits in the data, the name of the output
file to be produced, the maximum number of data items in the buffer, the
control address of the associated data register, the reschedule flag, the start
time and the delta time. The external output generated can be triggered by a
control bit or by automatic rescheduling, depending on how the reschedule flag
is set. If the reschedule flag is 0, the scheduling is done by the internal
logic using a control line(handling this in the same manner as a memory
action). If the reschedule flag is 1, the program automatically schedules the
action beginning at the designated start time, and automatically reschedules it
from the start time to the end of the run in increments of delta t. Each time
an external output is triggered for that set, either at reqular time intervals
or by the internal logic, the external output action is executed which saves
the requested data in the QM-1 main store buffer. At the end of the batch, the
entire memory buffer is written to disk file(s). Figure 13 shows a diagram of
the external outputs action structure.

~28-

Control Control

Action for eo set 1 Store Store
Data Address
Registers Registers
e d —
> =
—

Action for eo set 2 |

Action for eo set n

Main Store
External Output
Control Buffer
Store
Address t, '
Registers data,, run 1—
L,
> data,,
. eo set 1
.)
data,, run 2
] L,
data22
. run m
> run 1—
eo set 2
run 2
run m—
run 1
run :i] eo set n
> run

Note: eo = external output; assume n external output sets and m runs in batch
External Output Control Store Action Data Structures

External Outputs Action Structure
Figure 13

-29—

4.4 Algorithms

4.4.1 Initialization Algorithm

In the netlist, the user must specify the initial output value for
anywhere from one to all devices. The algorithm works as follows: For each
device, a record is kept of all input lines and the values on those input
lines, as well as any initial user-defined output value for the device. In
addition, a separate list is kept of all devices for which all input lines to
that device have defined values. This list is then processed one device at a
time. For each device whose input lines are all defined, its output value is
calculated. If the predefined output value, if any, does not agree with the
calculated value, then the user is notified, and the calculated value is used.
In the case of a flip-flop, if the preset line is active, the output is set to
one, whereas if the clear line is active, the output is set to zero. If
neither preset nor clear is active, the output is set to the user’s predefined
output value if any is present. Next, the fanout from this device is examined,
and the input lines to all devices to which it fans out are set accordingly.

As these input lines are being set, the destination device is examined to see
if after this input line is set, whether all of its inputs are then defined.

If not, the program proceeds to the next destination device. If so, the
program calculates an output value consistent with the input values, and then
this destination device is added to the list of defined devices.
Simultaneously, a check is made to see whether the predefined value, if any,
agrees with the calculated value. 1If not, the user is notified, but the output
value is set to the calculated value. This procedure continues for each device
on the "defined" list, and hopefully the "defined" list grows as the procedure
continues. After the program has processed the last device on the "defined"
list, the initialization procedure has been completed. If at this time, all
devices have defined output values, the initialization is considered
successful; however, if not all the devices are on the "defined" list, the user
is notified. He may choose to proceed with the emulation, but it would be a
better idea to correct the netlist and do the initialization again before
attempting an emulation.

4.4.2 Functional Emulation Algorithm

The functional algorithm schedules actions, executes actions at the times for
which they have been scheduled, and implements the faulting of gates and
memories. One iteration of the functional algorithm proceeds as follows:

Actions are scheduled as follows:
If the master action control switch is not on, no actions are to be
scheduled. If the master action control switch is on, then each action
control record is examined in turn. For each bit in an action control
record which is on, the appropriate action (whose address is found in the
corresponding word in the action control buffer) is scheduled.

Actions are then executed as follows:
The first event in the event list is examined. If its time is less than
or equal to the current time, then all the actions to which it is linked,
are executed, and that event is removed from the event list. If the time
of the first event is greater than the current time, no actions are
executed (because events are linked in order by ascending time).

-30-

Faulting of gates is carried out: .
If there are any gates to be faulted or from which faults are to be lifted
during this time period, the "faulter" gate is enqueued with connections
to all gates which are to be faulted or from which faults are to be
lifted. This enqueueing/dequeueing of the "faulter" gate insures that the
fault will be inserted/lifted in the next time step.

4.4.3 Gate-level Algorithm

The gate-level algorithm examines only those devices whose output values
changed during the previous period, and using this information, calculates
which devices change output value during the current time period. 1Initially,
there must be at least one device on the c stack. A device on the stack is one
whose output has changed during the previous time period. One iteration
consists of processing each device on the ¢ stack and simultaneously building
the cbar stack.

Processing of one device from the c stack proceeds as follows:

The device is removed from the top of the stack. It is then checked to
see whether its output value has changed an even or odd number of times
during the previous period. If the output value changed an even number of
times, then this device need not be processed at all. If, however, it
changed an odd number of times, then processing continues. Processing of
a given source device from the stack consists of processing all internal
connections from this device and then processing all external connections
from this device.

The Internal Connections are processed as follows:
Each device into which this device feeds (destination device) is
examined. The processing algorithm for the destination device depends
on the type of internal connection:

If Connection is to a gate or tri-state(but not the enable input):
The count (see Section 4.4.3.1) of the destination header is
appropriately updated. Next the current count and the initial count
(before the updating took place), are examined. If neither is zero,
then no more processing of this destination device is necessary;
however, if either one is zero, then this destination device must be
processed further. First the internal value is complemented. Next
a check is made to see whether the gate is enabled. If not, no
further processing is needed. If the gate is enabled, processing
proceeds: the internal value is copied to the external value. Next
a check is made to see whether this destination device is already on
the cbar stack (as a result of its output value having changed
because of a different source device which was already processed
from the ¢ stack). If it is on the stack, then all that is done is
to update its header item which indicates whether it has changed an
even or odd number of times. If it is not already on the cbar
stack, then it is enqueued on that stack.

If Connection is to a flip-flop or to the enable line of a tri-state:

The processing carried out depends on the type of connection. 1In
the case of a flip-flop, first the particular input in the header is

-31-

complemented, whether it be P, C, T, L, J, K, or D (J and K). The
rest of the processing is particular to the type of connection.
Again, the destination device is examined to see whether or not it
should be enqueued on the cbar stack.

The External Connections are processed as follows:

The new output value from the source device is copied into all bits in
external registers into which this device feeds. It should be noted
that any time the high order bit in the master action control register
is turned on (it is in an external register and is turned on if any
device feeding it goes high), then the next time the functional
algorithm is executed, some action(s) will be scheduled. The particular
actions scheduled will be those corresponding to the one bits in the
action control register(s).

Once this item from the ¢ stack has been processed, the processing of the
next source device from the c stack proceeds. This looping continues until the
c stack is empty and the cbar stack represents the new stack. This consists of
one iteration of the gate-level algorithm.

4.4.3.1 Description of Device "Count”

For each regular gate and tri-state device, a count is maintained within
the header record. The purpose of this count is to enable the program to know
(without explicitly calculating the output value as a function of the input
values) when the output value of a simple gate has changed. The "count" for
each device is initialized as shown in Figure 14.

-32-

Type of Gate Initial value
of "count"

AND N, M

NAND N,-M

OR N,

NOR N,

NOT 0

XOR N,-n

NXOR N,-n
M = total number of input lines to this device
N, = number of input lines that are high initially
n =

number of input lines high which result in high

output (XOR,NXOR only)

"Count” Initialization

Each gate is restricted to not more than 31(decimal) inputs.

Once the emulation has begqun, the count is maintained as follows:
Each time an input line transitions from zero to one, the count is incremented
by one. Each time an input line transitions from one to zero, the count is
decremented by one. Any time the count transitions into or out of zero, the

Fiqure 14

output value of the device is complemented.

-33-

5. User’s Guide
5.1 Installation of Programs

5.1.1 Installation of Emulator on Vax (Using Vax/VMS):
Note: This installation is necessary even if all production runs will be
done on the QM~1, because the initialization and file transfers must be done
from the Vax.

Notation Used:

user represents the name of the user’s root directory (without the
brackets). For example, if the user’s root directory is [Smith],
then in this document, user represents Smith.

Underlined items are those which the user types.

Installation Steps:

A tape has been created using the Vms Utility Backup. This tape has ID
"bbemul" and Save Set Name "diagem.bck". This tape contains the following
hierarchy of directories:

[bb.dem]
1. [bb.dem.emulator] source programs and command files for
compiling and linking emulator
{ 2. [bb.dem.run) command files for running emulator

| 3. [bb.dem.transfers]
[bb.dem.transfers.qmlvax] programs and command files for
transfers from QM-1 to Vax
[bb.dem.transfers.vaxqml] programs and command files for
transfers from Vax to QM-1

4. [bb.dem.templates]) Templates for data files

5. [bb.dem.targets])
[bb.dem. targets.counter]) all data files for 3-bit counter

circuit
(bb.dem. targets.toy) all data files for toy computer
circuit
[bb.dem.targets.test]) all data files for RTI test circuit
(bb.dem. targets.comm} all data files for RTI communicator

interstage circuit

In all cases it is necessary to restore 1. and 2. 1If one wishes to do
transfers, one must restore 3. If one wishes to use templates, one must
restore 4, and if one wishes to use sample target circuits, one must restore
any or all of the subdirectories of 5.

| -34-

Assume the tape has been physically mounted on msa0:

Use the following commands to restore all directories and subdirectories
from the tape:

$Mount/foreign msa0:

$Backup/verify msa0:diagem.bck/save/select=[bb.den...]
(user.dem...] (restore from tape)

$set default [user.dem.emulator]

$@compandlinkemu (compile and link programs)

Example of Installation:
Assumptions: Name of user root directory is (Smith)

$Backup/verify msa0:diagem.bck/save/select=[bb.dem...]
{smith.dem...]

(Restore programs from tape)
$set default [smith.dem.emulator]

$@compandlinkemu (Compile and link programs)

To Make Modifications to Existing Programs
To make changes to existing initialization Program:

$set default [user.dem.emulator]

Edit appropriate Fortran module(s) in [user.dem.emulator)
Do Fortran compiles of appropriate module(s)

$@initlink (links initialization programs)

To add new module(s) to existing initialization Program:

$set default [user.dem.emulator]

Create new Fortran modules in [user.dem.emulator) and compile
Add new module name(s) to init.opt file in [user.dem.emulator]
$@initlink (links initialization programs)

To make changes to existing emulation Program:

$set default [user.dem.emulator]

Edit appropriate Fortran module(s) in [user.dem.emulator]
Do Fortran compiles of appropriate module(s)

$@emullink (links emulation programs)

-35-

To add new module(s) to existing emulation Program:

$set default [user.dem.emulator]
Create new Fortran modules in [user.dem.emulator] and compile

Add new module name(s) to emul.opt file in [uSer.dem.emulator)
$€emullink (links emulation programs)

5.1.2 Installation of Emulator on QM-1

Note: This installation is not necessary if all production runs are to be
done on the Vax. 1In order to proceed, one needs at the minimum a working
knowledge of the Nova and Easy Operating Systems on the QM-1.

Notation Used:

Underlined characters are those which the user types into the QM-1
Operating System.

<CR> represents Carriage Return.
<ESC> represents "escape"
<Z> represents "control" key and Z key pressed simultaneously

The Diagnostic Emulation System Tape was created in Airlab at Langley
Research Center using the DISK-SAVE function of the EASY operating system.
The tape contains users 6 and 8 in that order. User 6 contains the
diagnostic emulation programs, and user 8 contains the Vax-to-QMl and the
QMl-to-Vax transfer programs. Note that the tape files can be restored to
users other than 6/8 by specifying the desired users in the USER-
FORMAT,USER= command and in the DIRECTORY SEARCH command.

5.1.2.1 Restore Emulation System From Tape to Disk:

Mount User Disk (it is assumed for this document that the disk is mounted
on drive 0, but it could be mounted on any drive)

Mount Emulation System Tape (it is assumed for this document that the tape
is mounted on drive 0, but it could be mounted on any drive)

Press Master Clear, Start

???LDEASY
SET DATE AND TIME
1 | DATE,, XX/XX/XX
! | TIME,, XX /XX/XX

-36-

! | DEADSTART

! | EASY-SPACE,, BS=26 , TPS=347777

1 <CR>

! {RESTORE-DISK , PASSWORD=HELP, MTUNI T=0 ,MTFILE=0 , DSKUNIT=0
! {USER-FORMAT, USER=6 T - - -
MOUNT TAPE ON DESIRED UNIT
HIT ANY KEY TO CONT., ESCAPE THROUGH 'ESC’ KEY
(ANY KEY)

SV-RES HEADER

DATE=XX/XX/XX

TIME=YY:YY:YY

USER MODE

ALL OF USER 6

TO ACTIVATE HIT
<CR> '

HIT RETURN TO UNLOAD
<ESC>

(user 6 has now been restored from tape to disk)

! {USER-FORMAT , USER=8
MOUNT TAPE ON DESIRED UNIT
HIT ANY KEY TO CONT., ESCAPE THROUGH 'ESC’ KEY
(ANY KEY)
SV-RES HEADER
DATE=XX/XX/XX
TIME=YY:YY:YY
USER MODE
ALL OF USER 8

TO ACTIVATE HIT RETURN
<CR>
HIT RETURN TO UNLOAD
(user 8 has now been restored from tape to disk)
<CR>
<z
5.1.2.2 Compile & Link Easy Programs: Vax<-->QM-1 Transfers
DIRectory,Search 1st=06,2nd=,08

1
! {EXEC BBEX1 (compile Easy programs)
! {BIND. (link Easy programs)

-37-

! tINCLUDE BBTEMP31

! {WRITE BBTEMPT1
112>

! {BIND

! {tINCLUDE BBMVMAIN:B
! tINCLUDE BBMVSEND:B
! {WRITE BBTEMP72
L1<Zy

! {BIND

1 { INCLUDE BBTEMP71

1 tINCLUDE BBTEMP72
!!WRITE BBMV
132>

5.1.2.3 Generation of program to write External Outputs to Disk

! {SIMPLQ SM WXMDISK:S WXMDISK:B $

5.1.2.4 Generation of Microcode Driver

-38-

PRESS Master Clear, Start
222LDNOV

TUSER 6

'EX /BBECOMPILE

5.1.2.5 Generation of Nanocode Emulator
PRESS Master Clear, Start
222LDNOV
TUSER 6
{ LD*NASPC
1.5=1
1.5=2 INPT=/BBEMP1V1:S BIN=/BBBNBIN
INP_INPT=/BBEMPIV1:S BIN=/BBEMPIVI
INP_INPT=/BBEMP2VI:S BIN=/BBEMP2V1
INP_INPT=/BBEMP3V1:S BIN=/BBEMP3V1
INP_INPT=/MSNANON:S BIN=/MSNANO:B
IMAP INPT=/BBEMPIV] BIN=W2
!MAP INPT=/BBEMP2V1 BIN=W3
IMAP INPT=/BBEMP3VL BIN=WA\3
{MAP INPT=/MSNANO:B BIN=/MSNANO:M

-39-

5.2 Data Preparation

5.2.1 Suggested QM-1 Tempilate

In preparing to emlate a system, one of the preliminary steps for the
user is to manually lay out the QM-1 memory to accomodate the various data
structures. This step must be done whether or not the entire emulation will be
done on the Vax or part on the Vax and part on the QM-1. The reason for this
is that when the Vax emulator was written,it was assumed that the "production”
runs would always be done on the QM-1 and that only "debugging" runs would be
done on the Vax. Thus the Vax initializer always sets up the data as if it
were to be run on the QM-1.

The main store of the QM-1 must be used for the target memories, the fault
buffer, the external input list, and the external output buffer. All other
data structures, including the netlist and external registers, are stored in
control store. A suggested layout for the QM-1 memories, which should
accomodate most emulations, is shown in Figure 15 (note that control store
locations 0 through 1777 cannot be used by the user.

CONTROL STORE

location contents
octa
I
0|
reserved for nanocode implementation
I
1777 |
2000
| free space and events(3 words per event)
2377
I
2400
memory actions (reads,writes)
I
2717 |
I
2720 | stop action(3 words)
2722 |
I _
2725 | Stop action(3+n words where n=no. of memories)
- |
-
-
3777 |
I
I

Externals

-40-

|
4001 | time
-
4&27 | master action control register
4430 | action control bits
4431 | pointers to actions
. | .
. | .
4474 |
4475 | more action control bits
4476 | pointers to actions
. | .
-
4541 |
-
-
-
4777 |
I
5000 | external output address registers(l word each)
I
5177 |
I
5200 | external inputs address registers{1 word each)
I
5277 |
|
5300 | external inputs data registers(size of each 1is
| determined by no. bits
[given in *eopts.dat)
5477 |
I
5500 | external outputs actions (8 words each)
5737 |
I
5740 | external inputs actions(each action is 10+n words
| where n is the no. of bits
| given in *eopts.dat)
7277 |
|
I
|
I
20000 |
I
I
|
|

netlist in binary form
(hardware description matrix)

-41-

location

{octal)

MAIN STORE

contents

~ 0000

1771

target memories

10000
10777

externals (if any)

11000

12777

fault buffer
(The total size is determined by the fault list)

no. words code function data used
2 2 stop run: op,t
3 3 stick gate 0 op, t,gate no.
3 4 stick gate 1 op,t,gate no.
3 5 1lift gate fault op,t,gate no.
5 6 insert fault in rom op,t,mem id,word id,bit id
5 7 lift fault from rom op,t,mem id,word id,bit id

external inputs list
(there is one ei list for each ei set.
the size of each list is n*(m+l) where
n is the no. of times an external input is inserted
m is the no. of 18-bit words required to hold
the no. of specified bits for this set)
(the external inputs list is stored automatically by the program
at the next 100, word boundary following the fault buffer)

external output buffer

(there is one buffer for each eo set

the size of each buffer is n*(m+1l) where

n is the no. of times an external output is written

m is the no. of 18-bits words required to hold

the no. of specified bits for this set)

(the external outputs buffer is stored automatically by the
program at the next 100, word boundary following the
external inputs list)

QM-1 Memory Template
Figure 15

-42-

5.2.2 Setup of Functional Memories

In most cases, target memories will be implemented at a functional level.
Outlined below are the steps the user must take to set up for this functional
emulation. These memories may be any combination of ROMS and RAMS. There are
two types of actions associated with memories, namely read memory and write

memory.

Each ROM should have at least one read associated with it, and each

ram should have at least one read and one write action associated with it. In
order to implement a given memory, it is the user’s responsibility to do the
following (see Section 5.4.1.2):

1.

In the netlist, there must be a single device of any kind whose output
line controls when the read/write takes place. The appropriate action
takes place only when this line transitions from low to high. The
output of this device must feed the master bit in the master action
control register, and it must also feed to a unique bit in a "control
bit" word in the action control block.

The address of the action to be performed when the control line goes
high, together with a delta time to be added to the current time for
scheduling, must be placed in the appropriate words of the action
control block, in the memories files.

For each read and write action, a separate data register(s) and an
address register must be set up as externals in control store. The
address register must be fed from the appropriate devices in the
network for both reads and writes. The data register for a read has no
explicit connections to it in the netlist. The identification numbers
of the devices to which the memory data will be fed when the read is
triggered must be designated within the read action. 1In the case of a
write, the data register must have explicit connections from some
devices in the netlist. For a RAM, the read and write actions must
have different data registers. A given memory may have more than one
read and/or write action associated with it. See A-36 and A-37 for
read and write layouts.

It is the user’s choice as to whether the address in the 18-bit address
register is to be right or left-justified. This choice is determined
by the bit positions in the address register into which the appropriate
devices feed. The value of item W in *iopts.dat depends on the user’s
choice. Item W is the value by which the address in the address
register must be divided to right-justify it in the 18-bit word. For
example, if the user chooses to let the address be right-justified in
the address register, then W=1; if the address is left-justified, and
is represented by 6 bits, then W=2**12 or 4096.

The read and write action data structures must be provided by the user
in the *mems.dat file.

The address of the action control block must be given in item D5, the
address of the master action register must be given in item D7, and the
number of memory control records must be given in item D6 of
*iopts.dat. The number of memory control records is the number of 18-
bit words needed to hold all control bits for the entire emulation.

-43-

10.

The number of memories must be given in item V of *iopts.dat.

The initial contents of the target memories must be given in *mems.dat.
These memories are implemented in the main store of the QM-1, hence
these entries will begin with "M" in column 1.

The contents of each word of the target memory may use one or more QM-1
18-bit words, depending on the number of bits in each target word. For
a particular memory, let n represent the number of 18-bit words
necessary to hold one target word. The user may decide whether the
target word will be left-justified or right-justified over these n
words. When the read action(s) for this memory are generated, it
should be noted that word 9 of the action corresponds to bit 17 of the
first of the n QM-1-words, word 10 corresponds to bit 16, etc.. Thus,
if the memory contents are left-justified, word 9 contains the device
identifier of the device into which the most significant bit of the
data feeds, etc.; however, if the data is right-justified in the
memory, an appropriate amount of zeros would appear in words 9 ff. to
correspond to the leftmost data bits that are not used. In addition,
item D in word 1 of the read/write action is affected by whether the
data is right or left justified(see the description of the read/write
action data structure).

If the number of memories is greater than zero, the relocation
constant(s) for the memories must be given in items V1-Vn of
*jopts.dat. The relocation constant is the amount by which the
contents of the memory will be offset from absolute location 0 in the
QM-1 main store. When the user lays out the QM-1 memory, he must
determine at which QM-1 absolute location (for example, x) that each
ROM or RAM will begin. Then he has a choice of two ways in which he
can present the initial data for the target memories, in the memories
file. Using the first method, he will specify a relocation constant of
0, and in the memories file, he will specify that the first word of
memory begins in location x, etc. Using this method, if the actual
memory begins at target location 0, he must manually add x to every
location for this memory that he specifies in the memories file;
however, if he wishes the program to do the relocation, then he would
use the second method. 1In this case he decides into which absolute
QM-1 location (say x) that the memory will begin; he gives x as the
relocation constant in items V1-Vn of *iopts.dat, and in the memories
file, he gives the contents beginning in location 0, and the program
automatically adds x to each location.

The data registers associated with read actions must be initialized in
the *mems.dat file to values consistent with the output values of the
devices to which the data register feeds.

—44-

5.2.3 Setup of Faults

If one wishes to fault gates, it is necessary to include two extra dummy
gates at the end of each netlist. A template for these is shown in Figure 16.
It is also necessary to enter the name of the dummy faulting device (in this
case ZZZFAULTER) in *iopts.dat, item E. See Section 5.4.1.2.3.2. The names of
the two devices is arbitrary, but they must be the last devices in the netlist,
and the names in the netlist must be in ascending order. A file containing
this template is on directory [bb.dem.templates]. (see Section 5.1.1)

template for the two standard faulting devices
allows for 30 gate faults per time step.(can be increased)
These two devices should be included at the end of the netlist.

>ZZZFAULTER 1l CLASS= 1 TYPE= 1 VALUE= 0 NICON= 30 NECON= 1
ZZZFAULTER 10 ZNAME= ZZ2ZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= 0 CONNT= 8
22ZFAULTER 10 ZNAME= 7ZZZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= (O CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= (0 CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER / 10 ZNAME= 272ZDUMMY REVER= (0 CONNT= 8
ZZZFAULTER - 10 ZNAME= 2ZZZDUMMY REVER= O CONNT= 8
ZZZFAULTER 10 ZNAME= Z2ZZDUMMY REVER= (O CONNT= 8
ZZZFAULTER 10 ZNAME= Z2ZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= Z2ZZDUMMY REVER= (O CONNT= 8
ZZZFAULTER 10 ZNAME= 222ZDUMMY REVER= (O CONNT= 8
ZZZFAULTER 10 ZNAME= 2ZZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= O CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= 2ZZZDUMMY REVER= (O CONNT= 8
ZZZFAULTER 10 ZNAME= 2ZZZDUMMY REVER= (0 CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= (0 CONNT= 8
ZZZFAULTER 10 ZNAME= ZZZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= 222ZDUMMY REVER= (0 CONNT= 8
2.ZZFAULTER 10 ZNAME= 227ZZDUMMY REVER= () CONNT= 8
ZZZFAULTER 10 ZNAME= 22ZZDUMMY REVER= 0 CONNT= 8
2ZZFAULTER 10 ZNAME= 2ZZZDUMMY REVER= (O CONNT= 8
ZZZFAULTER 10 ZNAME= 22ZZDUMMY REVER= 0 CONNT= 8
ZZZFAULTER 10 ZNAME= 22.2ZDUMMY REVER= O CONNT= 8
22ZFAULTER 10 ZNAME= Z22ZZDUMMY REVER= (O CONNT= 8
ZZZFAULTER 10 ZNAME= ZZ2ZDUMMY REVER= 0 CONNT= 8
Z2ZFAULTER 10 ZNAME= 22ZZDUMMY REVER= (0 CONNT= 8
ZZZFAULTER ' 11 CSMSF= 0 REGNO= 12 BITNO= 0 REVER= 0

>7.2ZZDUMMY 1 CLASS= 1 TYPE= 1 VALUE= 0O NICON= 1 NECON= 1
ZZZZDUMMY 10 ZNAME= 22ZZDUMMY REVER= (CONNT= 0
ZZZZDUMMY 11 CSMSF= 0 REGNO= 13 BITNO= 0 REVER= 0

Sample Template for Faulting Device

Figure 16

—45-

5.2.4 Setup of External Inputs

The user may create zero or more sets of external inputs for a given
emulation batch. See Section 4.3.10.4 for a description of external inputs.
It should be noted that the same external input files will be reused for each
run in the batch. It is the user’s responsibility to:

1. Set items in *iopts.dat (see Section 5.4.1.2.3):
Set items X, Z, and AA to appropriate values.

2. Set items in *eopts.dat (see Section 5.4.2.2.2):
Set item AA, which is the total number of external input files.
Set items AAl, AA2, and AA3 for each external input set. If item
AA is zero, then items AAl, AA2, and AA3 are omitted. For each
external input set, the user must create an External Input File.
He can use any valid VMS file name for this file. Each external
input file must have a unique name. This user-chosen name is
specified in item AAl. Item AA2 specifies the number of bits to
be supplied to the netlist from this set. Item AA3 lists the
devices into which the bits feed. Note that the external input
sets can be listed in any order. For each external input set, the
devices must be listed in the order corresponding to the data
bits, where the first device listed corresponds to the most
significant data bit.

3. Create External Input Files (see Section 5.4.2.2.4 for details):
This step is omitted if item AA in *eopts.dat is zero.

5.2.5 Setup for Producing External Outputs

For a given batch, there may be zero or more external output files
created. See Section 4.3.10.5 for a discussion of external outputs. An output
file will be written for each external output set at the completion of each
batch.

If the user has specified that the number of external output sets is one or
more, then it is his responsibility to do the following:

In *iopts.dat, set items BB, and DD.

In *eopts.dat, set item BB.

In *eopts.dat, if BB is at least one, then set items BBl through BBS5.
In the netlist, create external register(s) to act as the external
output data registers. The appropriate logic devices must feed into
these registers.

5. For any external output set for which automatic rescheduling is not
used:

oW N =
s o o o

In the netlist the appropriate device must be fed into the master
action control bit and into a bit in some "control bits" word (see
Sections 4.3.7 and 4.3.8). This device is the one whose transition

-46-

from low to high will trigger the scheduling of the external output
action.

Set the address of the external outputs action(s) together with a
delta time to be added to the current time for rescheduling in the
appropriate words of the action control block in the memories file.
It should be noted in determining the action addresses that the
first external outputs action is stored at the address specified by
the user in item BB of *iopts.dat, and that each external outputs
action following the first is displaced from the previous one by
10(octal).

5.3 Program Modifications
5.3.1 Implementation of User-Defined Action

Vax Version
In order to implement a new action, one must do the following:

1. Select an action code for use with this action. Each action must have
a unique code. The codes 1 through 30 (decimal) are reserved for use
by the emulator. The codes 50 through 55 are reserved for use by the
University of Illinois. All other codes up to and including 127
(decimal) may be used.

2. Create the action data structure for this action according to the
layout in A-35 and include it in *mems.dat.

3. Write a new Fortran subroutine module to perform the action. See the
already existing action modules, ACT2, ACT3, ACT6, ACT7, or ACT8 to
see how this is done. Compile the new Fortran action subroutine.
Modify the Fortran Module EX1ACT (see A-9) to include a branch to the
new action. Compile EX1ACT. Modify the emulation link file emu.opt
to include linking of the new subroutine.

S$@emulink (see Section 5.1.1)

4. 1Include an external connection from some device in the netlist to the
master action control bit and another to some bit in the action
control buffer, in order to trigger the action. A transition from low
to high on the output line of this device will then trigger the
action.

QM-1 Version

All of the above would be done. One would modify the corresponding
microcoded routine "Exlact" and would create and assemble a new action
routine written in the Multi language.

5.3.2 Instructions for Increasing Array Sizes

Vax Version

-47-

I1f one wishes to modify the array sizes for the components of the system, one
should follow the steps below:

1. Modify the dimension parameter(s) in the module "emuparam.for".
Listed below are the parameters which specify the array sizes. The comment
to the right of each parameter explains what that parameter represents.

C EMUPARAM.FOR

c dimension parameters
parameter (yndevi = 6000) Imaximum number of devices
parameter (ynconn = 14000) !maximum number of internal connections
parameter (ynstac = 500) !maximum no. items on stack at one time
parameter (yncomm = 100000) Imaximum no. bytes for device comments
parameter (ynmems = 30) !maximum no. target memories
parameter (ynei = 20) !maximum no. external input sets
parameter (yneo = 20) !maximum no. external output sets
parameter (ynupc = 15) !maximum no. user print choices
parameter (ynstat = 500) !maximum no. state information devices
parameter (ynchid = 1000) !max no. devices to change at one time
parameter (pcslow = 0) !control store low address
parameter (pcsup = 20000) !control store high address
parameter (pmslow = 0) !main store low address
parameter (pmsup = 120000) !main store high address
parameter (plslow = 0) !local store low address
parameter (plsup = 31) !local store high address

2. Recompile and link all programs (initialization programs and emulation
programs) as described in Section 5.1.1.

5.4 Running the System

It is assumed for the purposes of describing these files that the user is
familiar with Fortran Formats. All of the formats listed here are in the
Fortran language.

For all initialization and emulation runs executed on the Vax, all file
names must be valid Vms file names. For a particular target hardware, all input
and output files should be on the same subdirectory and must begin with the same
user—defined prefix. The suffixes are predetermined and listed in A-7 and A-8.
For the purposes of this document, the prefix is always denoted with "*", For
example, assume the user specifies "counter" as his prefix. Then, in this
document, *mems.dat would represent "countermems.dat".

5.4.1 Initialization of Target Hardware on Vax
5.4.1.1 General

Before a given network can be emulated, it must be initialized. The
initialization process is one in which the inputs are a description of the

netlist in DENF format, the initial contents of the target memories, the
initialization run-time options, and the device descriptions to appear on the

-48-~

emulation stack outputs; the principle output is a complete description of the
netlist with initial output values defined, and a complete representation of
the initial memories, both in the binary form required by the emulator.

Four input files are required for running the initialization program. Two
output files are always produced, and another four output files are sometimes
produced, depending upon the options the user has requested in *iopts.dat.

*net.dat

*mems .dat

*iopts.dat

*comm.dat

*sav.dat

*jiout.dat

*mat .dat

*extrn.dat

*alph.dat

Input Files
Required Files

The target network description(netlist)in DENF
format. See Section 5.4.1.2.1.

The initial values to be resident in the host memory
before the emulation begins. See Section 5.4.1.2.2.

The run-time initialization parameters. See Section
5.4.1.2.3.

The comments or descriptions to appear alongside

device names when they appear on the stack output.
See Section 5.4.1.2.4.

Output Files

Mandatory Output Files

Initialized System State File: Binary netlist and
memories to be used as inputs to the Vax emulator.

Text output which varies according to the options
that the user has requested in *iopts.dat.

Optional Output Files

Netlist in a form to be used by the QM-1 for
emulation. This file is only produced if item O is
turned on in *iopts.dat.

Initial contents of control store external registers
in a form to be used by the QM-1 for emulation. This
file is only produced if item O is turned on in
*iopts.dat.

A list in alphanumeric order by device name of all
the devices in the netlist. Included with each
device is the device name, device index number,
device type, device class, and initial output value
of the device, in the format
(1X,A20,1X,14,1X,2A10,1X,11). This file is only
produced if item R is turned on in *iopts.dat.

—49-

*nam.dat A list in alphanumeric order by device name of all
the devices in the netlist. Included in each record
is the device number in decimal followed by the
device number in octal followed by the device name in
the format (1X,14,1X,06,1X,A20). This file is
produced to aid the user in creating a meaningful
*comm.dat .

Following is a detailed description of each file:

5.4.1.2 Input Files

5.4.1.2.1 Netlist File

The network description completely defines the target network of gate-
level logic and the interconnections among the devices, all in the DENF format.
Normally, this file would be generated from some preprocessor or translator.
Each device and its fanout is described by a group of records, referred to as
the "device definition". A device is defined as a regular gate (AND, NAND,OR,
NOR, NOT, XOR, NXOR), a tri-state device or a flip-flop. Each record contains
the name of the device being defined. The device definitions must be in
ascending order by device name, according to the ascii collating sequence.
Within each device definition, the records must be in the order as specified
below. The group of records necessary to specify a particular device
definition varies according the device type. The maximum number of devices at
present is 6000. The maximum number of internal connections is 14000. The
maximum number of external connections is 6000. These numbers can be increased
should it become necessary by changing dimensions in Fortran programs (see
Section 5.3.2). There are four different types of Device Definition
corresponding to:

1. regqular gate other than XOR or NXOR
record 1: <device description>
record 2 and following: <internal connections>
<external connections>

2. XOR or NXOR gate
record 1: <device description>
record 2: <xor specification>
record 3 and following: <internal connections>
<external connections>

3. tri-state device
record 1: <device description>
record 2: <tri-state specification>
record 3 and following: <internal connections>
<external connections>

4. flip-flop
record 1: <device description>
record 2: <flip-flop specification 1>
record 3: <flip-flop specification 2>

record 4 and following: <internal connections>
<external connections>

-50-

where:
<internal connections) := one or more <internal connection)
<external connections) := zero or more <external connection)

Record Types:

<device description> format: (1x,a20,i3,8x,i3,4(7x,13))
contents: NAME, SEQUEN,CLASS, TYPE,VVALUE,NICON, NECON

<xor specification> format : (1X,A20,13,8X,13)
contents: NAME, SEQUEN,XORNN

<tri-state specification> format : (1X,A20,13,8X,13)
contents: NAME,SEQUEN,VDIS

<flip-flop specification 1> format : (1X,A20,13,8X,03)
contents: NAME,SEQUEN, FFVALUE

<flip-flop specification 2> format :(1X,A20,13,8X,13,7X,13)
contents: NAME,SEQUEN,R,U

<internal connection> format : (1x,a20,i3,12x,a20,6x,i3,7x,i3)
contents: NAME,SEQUEN,ZNAME, REVER, CONNT

<external connection> format : (1X,A20,I13,1X,4(7X,I3))
contents: NAME,SEQUEN,CSMSF,REGNO,BITNO, REVER

The symbols used for the "contents" above are as follows:

NAME Device Name: the unique device name. The name must be at least one
but not more than 20 printable ascii characters. While the name may
contain any valid ascii printable characters, it must be remembered
that in the netlist, these names must be in ascending order
according to the ascii collating sequence. It should also be noted
that the two dummy devices used for faulting must be the last two
devices in the netlist, and so must be named appropriately. Also
note that upper case and/or lower case letters may be used in the
name, but at any other point in an input file in which the name
appears, the case must match, character by character, the case used
in the netlist name.

SEQUEN Sequence Number-this number is not used by the emulator. It is
included in order to keep the records for one device in order during
any sort by device name. For purposes of the emulator, it may be
left blank.

CLASS Device Class
1=Gate
2=Flip-flop
3=Tri-state

TYPE Gate Type

-51-

0=flip-flop

1=AND

2=NAND

3=0R

4=NOR

5=NOT

6=XOR

7=NXOR

VALUE Initial value on output line:

User-initialization (item B in Init. Options File = 0):
Value must be 0 or 1
Program will use the user-assigned value if there is no
inconsistency. 1If there is an inconsistency, the user will be
notified, and the calculated value will prevail.

Program-initialization (item B in Init. Options File = 1):
Value must be 9
Program will attempt to calculate the value. If it cannot, it
will notify the user.)

NICON Number of internal connections (This number represents the number of
devices in the network to which the output of this device fans out).
This number must be greater than zero.

NECON Number of external connections (This number represents the number of
"external" or "pseudo" connections to which the output of this
device goes. These connections are not part of the internal
network, but are used to hold output values of devices for the
functional emulation.) This number can be zero or greater.

For XOR and NXOR gates only:

XORNN The exact number of input lines which must be high in order for the

output Iine to be high. If the number of high input lines is less
than or greater than this number, the output line will be low.

For Flip-Flops Only:

FFVAL Initial Flip-flop values(PCTLJK)
This is an octal value which represents the initial value for bit
positions 0-5 of the flip-flop header word. Bit 5 is the value on the

P

connection, bit 4 on the C connection,etc.

See A-25, Device header Layout (Flip-Flop).

For the purposes of initialization:

P

and C: the default is negative logic, i.e., the value of 1 is
benign, and 0 is active on the preset and clear lines. This
can be overridden at the time of initialization with a flag
in the options file.
the default is negative edge-triggered. This can be
overridden at the time of initialization by using a
connection type of -3 rather than 3.

Note: During initialization, any value initialized by the user may

be overridden if the program discovers an inconsistency.

52—

(Used for RS flip-flops)

Indeterminate Flag 1. See A-28 and A-29, Device Connector to Flip-
Flop, word 1, bit 9. Also see Migneault{2]. The initial value should
be 0 if this feature is not to be used.

(Used for RS flip—flops) Indeterminate Flag 2. See A-28 and A-29,
Device Connector to Flip-Flop, word 1, bit 8. Also see Migneault[2].
The initial value should be 0 if this feature is not to be used.

For Tri-States only:

VDI1S The value the output line of the tri-state is to assume when it is

disabled. This value may be 0 or 1.

For Each Internal Connection:

ZNAME Name of the destination device, i.e., the name of a device to which

this device fans out.

REVER Reversal flag (reversal meaning same as inversion)

O=no reversal entering the destination device
l=reversal entering the destination device

CONNT Connection type

0 = connection to a gate, or connection to a tri-state but not the
enable line of the tri-state.

1=P connection to flip flop

2=C connection to flip flop

3=T connection to flip flop (downward edge-triggered)
-3=T connection to flip flop (upward edge-triggered)

4=L connection to flip flop

5=J connection to flip flop

6=K connection to flip flop

7=D' connection to flip flop

8=Enable line to tri-state

1 "p" connection is one in which the K input is always the complement of
the J input.

For each External Connection:

CSMSF

REGNO

BITNO

Control Store/Main Store

0=Control Store, l=Main Store

Register Number

The number of the external register. These are numbered beginning with
Register 1. The number is decimal.

Bit Number

The number of the bit within the register. These are numbered from 0 to
17. The least significant bit is numbered 0, and the most significant
bit is 17. This number is decimal.

-53-

REVER Reversal flag (or inversion flag)
0=no reversal entering the external register
l=reversal entering the external register

See Appendix C for a sample of a network description file.

5.4.1.2.2 Memories File

Purpose

The memories file specifies the values which are to be resident in the
control store and the main store of the QM-1 at the beginning of the emulation,
but which are not generated by the initialization program and must therefore be
supplied by the user. For most emulations, these initial memory values are:

In control store:

memory read and/or write actions
user-generated actions

action control block

initial memory data register contents

In main store:
actual contents of target memories

Format

The memories file may contain seven different record types. They are as
follows:

Type 1: column 1 contains "!"
meaning: Remainder of record contains comments which are not used
by emulator

Type 2: columns 1-3 contain "ROM" (must be upper case)
nmeaning: Remainder of this record is blank. Records following this
record are of type 6 or 7, and they represent the contents of a
target ROM.

Type 3: columns 1-3 contain "RAM" (must be upper case)
meaning: Remainder of this record is blank. Records following this
record are of type 6 or 7, and they represent the contents of a
target RAM.

type 4: column 1 contains "C" or "c"
meaning: The remainder of the record contains octal values separated
by commas. Each octal value can occupy up to six columns and can
have leading blanks. The first octal value represents the beginning
control store location into which the remaining values will be
consecutively placed.

type 5: column 1 contains "D" or "d"

—54-

meaning: the remainder of the record contains octal values separated
by commas. Each octal value can occupy up to six columns and can
have leading blanks. The first octal value represents the beginning
control store location into which the remaining values will be
consecutively placed. The only difference between type 5 and type 4
is that for type 5 the values to be placed into control store
represent device index numbers. This type need only be used when
preparing data for QM-1 emulation runs.

type 6: column 1 contains "M" or "m"
meaning: the remainder of the record contains octal values separated
by commas. Each octal value can occupy up to six columns and can
have leading blanks. The first octal value represents the beginning
main store location into which the remaining values will be
consecutively placed.

type 7: column 1 is blank
meaning: the remainder of the record contains octal values separated
by commas. Each octal value can occupy up to six columns and can
have leading blanks. The first octal value in this case is not a
location but the value to be placed into the next consecutive
location after the last location of the previous record. The
remaining values will be consecutively placed.

Note regarding the order of the records in the memories file:

All records describing the contents of ROMS and/or RAMS should be at the
end of the memories file. All the records for one ROM or RAM must be
contiguous. Obviously, all records of type 7 are order-dependent, since the
location comes from the previous record. All other records besides those just
mentioned are independent of order.

Note regarding the relocation of ROMS and RAMS:

Immediately preceding the first record for each target memory, a record
must be inserted which consists of the word "RAM" or "ROM" in columns 1-3. It
is used to identify the beginning of each new target memory for purposes of
relocating it in the QM~1 memory and for identifying the memory identification
for memory fault insertions.

The user may, if he desires, request that the initializer relocate one or
more ROMS and/or RAMS in the QM-1 memory. If he chooses to do this, he
supplies the relocation constant to the program, and this relocation constant
is automatically added to the location in the record. (see Section 5.4.1.2.3,
items V1...Vn).

Note regarding in-record comments:
For any type listed above, if "!" appears in any column, then all columns
after the "!" will be treated as comments.

55—

5.4.1.2.2.1 Sample Memories File

Following are examples of records within a memories file, *mems.dat.!

! Memories File <—

! This file contains all values to be placed

! during initialization into the QM-1 COMMENTS (type 1)
! memory, both control store and main store. (not used by

! emulator)

! action #6, operations action —

¢002725,030000 !code=6 —

c002726,000000 !ptr to next action CONTROL
¢002727,000000 !reschedule time STORE (type 4)
c002730,002400 'action address table-bank 1 CONTENTS
c002731,002440 ! memory bank 2 (see note 1)
c002732,002532 ! memory bank 3
c002733,002600 ! memory bank 4
€002405, 4406 ICS location of data register
€002406,0,37 'valid addresses for this memory

13,35,4763 . <— (type 7)
1

! MEMORY #1, ROM8.32.1, SEQUENCE CONTROL ROM
ROM (type 2) (see note 2)

M005000,306,307,310,311,264,264,264,264,266,312 <— MAIN STORE CONTENTS(type 6)
M005020,153,154,155,156,0,0,0,0,264,265,266 <—! (see note 3)
!

MEMORY #2, ROM8.512.1, MICROCODE START ADDRESS ROM

10, 50, 40, 44, 34, 51, 46, 42, 35
20, 262, 272, 276, 102, 264, 273, 277, 103

1

ROM

M o0, 41, 16, 45, 14, 27, 17, 43, 15
M

M

]

]

! MEMORY #3, Raml6.64.1
]

RAM (type 3) (see note 4)
M 0000,110001, 440, <
0400, 1401, 4001, 1401, 4002, 1401, 4003 MAIN STORE
0406, 1401, 4004, 1401, 4005, 1401, 4006 CONTENTS (types 6,7)
0420, 1401, 4011, 1401, 4012, 1401, 4013 (see note 5)

0432, 1401, 4016,177400, 11000, 77416, 41017 <

Note 1: The first record causes 30000, to be placed into control store
location 2725,. The second record causes 0 to be placed in control
store location 2726,, etc.. The ninth record places 0 into location
2406, and 37, into Yocation 2407,. The tenth record places 13, into
location 2410,, 35, into location 2411, and 4763, into location
2412, . Note that all of the text to the right of the "!" is merely
comments.

Note 2: The records that follow (until the next type 2 or type 3 record)
contain the contents for the next target ROM.

56—

Note 3: These two records contain contents for a target ROM. The first
record places the value 306, into main store location 5000,, 307,
into location 5001,..., and as the last value for this record,
places 312, into location 5011,. The second record causes 153, to
be placed into main store location 5020,, 154, into location 5621,,
etc..., and finally 266, into location 5032, .

Note 4: The records that follow (until the next type 2 or type 3 record)
contain the contents for the next target RAM.

Note 5: These records contain contents for a target RAM. The first record
places the value 110001, into main store location 0, and the value
440, into location 1. The second record places the value 400, into
location 2, 1401, into location 3,..., and finally 4003, into
location 10,, etc..

5.4.1.2.3 Initialization Run-Time Options File

The initialization options file *iopts.dat is an input file which contains
parameters and user selections for the initialization run. The initialization
options file is usually prepared manually with an editor. Listed below is a
sample initialization options file. It can be used as a template for the
user’s preparation of his own file. Following the sample is a description of
each of the records in an initialization options file. 1In order to facilitate
the discussion, the individual records in the sample have been labeled on the
far right with capital letters. Some of the items in this file are no longer
used or are used only for debugging purposes. For that reason, only the items
currently used that are relevant to the general user are so labeled. These
capital letters are merely for documentation purposes. The general user need
only be concerned with the labeled items. For all other items, they can be
left at the values in the sample, but they must be present in the file in the
order indicated. Items I through S control whether various option outputs will
be produced. In each case, unless otherwise noted, the particular output will
be produced as part of the *iout.dat file. If this is not the case, the name
of the file produced is noted in the item description.

5.4.1.2.3.1 Sample Initialization Run-Time Options File

Following is a sample of an Initialization Options file, *iopts.dat. The
label for each record is a capital letter appearing to the far right of the
record. It is for documentation purposes only, and does not actually appear in
the record.

The output options 1-50 (items I through S) are switches which control
which outputs are produced. These options have no effect whatsoever on the
initialization but are merely for the user’s benefit if he wishes to see the
initialization process in more detail (especially when the network has
initialization problems). In each case, a 1 means the option is turned on and
the corresponding output will be produced, while 0 means it will not. Unless
otherwise noted, the particular output will be produced as part of the
*jout.dat file. If this is not the case, the name of the file produced is
noted. The records not labeled with a capital letter are not used (i.e., the
values are "don’t care", but must still be present).

-57-

Note: 1In each record, text following the "!" is comments

Abbreviations:
In what follows, the abbreviation ei is used for
external inputs, and the abbreviation eo is used for
external outputs. The abbreviation cs is used for control store,
and ms is used for main store. An asterisk (*) preceeding

the name of a file represents the user-supplied prefix.

Sample *iopts.dat File

22 not used
23 not used

-58-

Any Title T Title for hardware being emulated : A
1 ! initialization flag O=user, l=computer B
0 ! user val for no-input devices c
1 ! preset-clear convention flag 0:1=benign l:1=active D
020000 ! cs address for netlist Dl
004000 ! cs address for external registers D2
000000 ! ms address for external registers D3
004001 ! cs address for time D4
004430 ! cs address of action control block D5
000001 ! number of "control bit" words D6
004427 ! cs address of master action control register D7
002720 ! cs address of stop action D8
002000 ! cs address of free space list D9
50 ! number of free space records D10
003760 ! main store address of fault block D11
002725 ! cs address of operations action data structure D12
ZZZFAULTER ! name of faulting device E
004400,004407 ! ¢s lo,hi address for dump F
000000,000000 ! ms " " " G
000000,000010 ! 1s " " " H
1 1*1 initial device headers **first output option** I
1 ! 2 not used

0 ! 3 not used

1 ! 4 not used

1 ! 5 not used

1 ! 6 not used

1 ! 7 not used

1 1%*8 control store memory dump K
0 '*9 main store memory dump L
0 1*10 local store memory dump M
1 1*11 not used

1 ! 12 not used

0 ! 13 not used

1 ! 14 netlist in QM-1 format o
0 ! 15 not used

1 1*16 connections list P
0 ! 17 not used

0 ! 18 not used

0 ! 19 not used

1 1%20 devices with undefined output values Q
1 ! 21 devices with defined output values Q0
0

1

'1,1

NFEPOOOOOOOHOOOOOROOORKRMEEMFEFOOOOQOOOM

e
[

Kok Kok
*kdkokk
*kkkk
Kok ke ke
3
001000
005500
006300
1
005000
000200
004500
004540
000160
000200
000150
015000
020000
000031

Gum 0mm Sum gur ¢ GuB Gum Gem fum 0m Gt Gum §om S Guw Gum fom P gum P ¢ Qum

G gem gen g g guo G

24 memory dumps at stop time
25 alphabetized list of devices

26 not used
27 device n
28 not used
29 not used
30 not used
31 not used
32 not used
31 not used
32 not used
33 not used
34 not used
35 not used
36 not used
37 not used
38 not used
39 not used
40 not used
41 not used
42 not used

43 cs initialized external registers in QM-1 format

44 not used
45 not used
46 not used
47 not used
48 not used
49 not used
50 not used

ame list

'not used
tnot used

stack

1
.
!
H
!
.
]
.
!
H

items

no. of target memories
relocation constant for memory 1
relocation constant for memory 2
relocation constant for memory n

divisor to

right justify target address

address in cs for first ei

not used

address in cs for first
address in cs for first
address in cs for first

not used

address in cs for first

highest loc
highest loc
highest loc

in cs to go
in ms to go
in 1s to go

59—

el
ei
eo

eo
to
to
to

action

address reg
data reg

action-—beg of eo

address reg-end eo

save file
save file
save file

eSS« c

83w

EE
FF

5.4.1.2.3.2 Record Descriptions for Init. Run-Time Options File

D1

D2

D3

D4

D5

D7

Formats:
In each item, the Fortran format follows in parentheses after the
name of the item.

Descriptions:

Title (10a4) : Any title which describes the target hardware.
This title will appear at the beginning of the initialization output
file *iout.dat and at the beginning of the emulation output file
*eout.dat, preceded by "TARGET MACHINE:".

Initialization Flag (Il)
I1f set to 0, user must supply output values for all devices in *net.dat.

If set to 1, user will supply at least one device output value, but may
supply more. Program will attempt to calculate any values not supplied.

User-supplied value for devices with no inputs (I1)
For each device which does not have any inputs, and no predefined value,
this value will be used as its output value.

Preset~clear convention flag (I1)
1f set to 0, then a value of 1 on either the P or C input to any flip-

flop will be treated as benign, i.e., will not cause the output value to

be set or cleared respectively.

If set to 1, then a value of 1 on either the P or C input to any flip-
flop will be treated as active, i.e., will cause the output value to be
set or cleared respectively.

Control Store Address for Netlist (06)
The starting address in control store for the binary netlist(06)

Control Store Address for External Registers (06)

The starting address in control store for external registers. (the first

register is referred to as register number 1)
Main Store Address for External Registers (06)
The starting address in main store for external registers.
(not generally used)

Control Store Address for Time (06)

The address of some cs external at which the current time will be stored

at each clock cycle, to be available for output if so desired. 1It can
be dumped in any format by using items Z1 and Z2 in the *eopts file.

Control Store Address of Action Control Block (06)
The starting address in control store of the action control block.

Number of "Control Bit" Words in Action Control Block (*)
The number of QM-1 18-bit words needed to hold all the control bits for
the emulation.

Control Store Address of Master Action Control Register (06)

-60-

.
—_— et

The control store address of the master action control register which
contains the master bit which goes high any time at least one control
line goes high.

D8 Control Store Address of Stop Action (06)
The starting address of the stop action in control store.

D9 Control Store Address of Free Space List (06)
The starting address in control store of the free space and
event lists.

D10 Number of free space records (*)
The maximum number of free space records to provide space for. Each
record takes three QM-1 words.

D11 Address of fault block in main store (06)
The starting address in main store where the fault list will reside.

D12 Control Store Address of op action data structure (06)
The control store address of the op action (action 6).

E Name of Faulter Device (A20)
The name of the device to be used for faulting gates.

F QM-1 Control Store Dump Locations (06,1X,06)
The starting address(in octal) of the block of control store to be
dumped, followed by the ending address(in octal) of the block of control
store to be dumped. The dump takes place after initialization only if
print option 8(item K) is on.

G OM-1 Main Store Dump Locations (06,1X,06)
Same as F, but for Main Store and print option 9(item L).

H QM-1 Local Store Dump Locations (06,1X,06)
Same as G, but for Local Store and print option 10(item M).

I Initial Device Headers (I1)
If this option is turned on, the initialization output will
contain a list(in octal) of the initial header word for each
device in the netlist along with its QM-1 control store address.

K Control Store Dump Option (Il)
If this option is on, the control store range specified in item F
will be dumped after initialization.

L Main Store Dump Option (I1)
If this option is on, the main store range specified in item F
will be dumped after initialization.

M Local Store Dump Option (Il)
If this option is on, the local store range specified in item F
will be dumped after initialization.

0 Netlist in QM-1 format (I1)

-61-

1f this option is on, a file (*mat.dat) will be produced which can be
sent to the QM-1 for emulation on that machine. This file contains the
entire netlist in a matrix form to be used by the QgM-1. This option
would only be on if one is intending to do the emulation runs on the QM-
1

Connections List (Il)
A complete list of the network, showing for each device, all the devices
which feed into it, the device types, and the initialized output value
for each device.

Devices with undefined output values (Il)
A list of all devices for which the program was not able to determine
the output value. The user should analyze the netlist, correct the
problem, and rerun the initialization. This should usually be turned on
to see if there are any problems in the netlist description.

Devices with Defined Output Values (Il)
A list of all devices for which the program was able to determine the
output value.

Alphabetic List of Devices (I1)
If this option is on, a file(*alph.dat) will be produced. This file
contains the name,number, type, class, and initial output value of each
device in the netlist, in alphanumeric order by name.

Device Name List (Il)
1f this option is on, a file(*nam.dat) will be produced. This file is
to be used as a template for use with some editor to manually produce
the file *comm.dat. It would normally only be necessary to produce this
file once, and then to edit it as changes are made to the netlist. It
is not necessary to produce this file at all if comments are not desired
in the stack dumps produced during the emulation runs. See Section
5.4.1.2.4.

Control Store Initialized External Registers in QM-1 Format (Il)
If this option is on, a file (*extrn.dat) will be produced which
contains the control store initialized external registers in the format
necessary to be sent to the QM-1 for emulation on that machine. This
option would only be on if one is intending to do the emulation runs on
the QM-1.

Stack Item(s) (A20)
The names of all devices on the initial stack. There will be one record
for each device on the initial stack. There must be at least one item
in this list. The items can be in any order. The same initial stack
will be used for each run in the batch.

Number of target memories (*)
If this value is 0, then items V1 through Vn are not to be included. If
this value is greater than zero, say n, then V1 through vn must be
included.

V1..Vn Memory Relocation Constants for memories 1 through n (06)

-62-

BB

DD

EE

FF

The number of locations by which each target memory will be relocated in
the QM-1. Each target memory is stored in the main store of the QM-1,
and thus must have some relocation constant to map it into the memory of
the QM-1. The contents of each target memory as specified in *mems.dat
may either be manually relocated in the QM-1’s memory by the user, or
may be relocated by the program. If the user does the relocation, enter
a 000000 here. If the program is to do the relocation, enter the
relocation constant here. If the user does the relocation, then all
memory addresses for main store in the *mems.dat file are absolute QM-1
addresses, i.e., the actual target address plus the QM-1 relocation
constant. If the program is to do the relocation, then each main store
address in the *mems.dat file is the target memory address. Regardless
of whether or not the relocation constant is zero or greater than zero,
the actual address register must contain the target address, i.e., the
relocation constant is not included in the address in the address
register.

The target memories must all appear at the end of the *mems.dat file in
an order corresponding to the order of the relocation constants
appearing here. The memories are identified starting with 1, and are
numbered consecutively in the order in which they appear in *mems.dat.
The relocation constants in *iopts.dat must correspond in number and
order to the memory contents in *mems.dat.

Divisor to right justify emulated address register (*)
The power of 2 by which the 18-bit emulated address register must be
divided to right justify the address in an 18-bit word.

The QM-1 control store address at which the first computer—generated ei
action is to be stored (06).
The rest will be stored contiguously.

The QM-1 control store address where the first ei address register will be
stored (06).
The rest will be stored contiguously.

The QM-1 control store address where the first ei data register will be
stored (06).
The rest will be stored contiguously.

The QM-1 control store address at which the first computer-—generated eo
action is to be stored (06).
The rest will be stored contiguously.

The QM-1 control store address where the first eo address register will be
stored (06)
The rest will be stored contiguously.

The highest location in the control store save area! (to be saved in
*save.dat) by the initialization program (06)
The save area begins with location zero.

The highest location in the main store save area! (to be saved
in *save.dat) by the initialization program (06)

-63-

The save area begins with location zero.

GG The highest location in the local store save area! (to be saved
in *save.dat) by the initialization program. The save area
begins with location zero. (06)

1 save Areas At the beginning of an emulation batch, initialized data
structures are read from disk and stored in the QM-1
memory. Certain of these data structures may change
during a run, but some do not. Thus the ones which
change are kept in the low portions of control store and
main store so they can readily be restored before each
run. The low word of a save area is always 0, but the
highest word is specified by the user in *iopts.dat.

5.4.1.2.4 Device Comments File

The comments file specifies for each device listed in the file the
descriptive comment that will appear to the right of the device name each time
that device appears on the stack in the emulation text output file, during the
emulation. The stack is only printed when the user requests it. This
usually means that he is analyzing the results of the emulation at each clock
step, or he is trying to follow the behavior of some device during the
emulation. At such times, it has been found that with large number of devices
in the netlist, seeing the device name on the stack is not sufficient to remind
the user of the function of the device, and hence these descriptive comments
are provided. Thus, when the device name appears on the stack, the comment
reminds the user of the function of the device.

Because of the potentially large number of devices in a netlist, an
optional aid was provided to enable the user to produce this comments file.
When he runs the initialization the first time, he can provide an empty
*comm.dat file, but turn on item S in the *iopts.dat file. By doing this a
skeleton file will be produced containing all the device names in alphabetical
order, and then all the user need do is edit the file, adding the descriptive
comments. For any devices for which he does not desire any comments, he can
merely delete that device record from the file or just leave the record with no
comment. Then he must run the initialization again, this time using the newly
edited file as the *comm.dat file.The file produced by turning on item S has
the following format and contents:

Fortran Format for each Record: (1X,14,1X,06,1X,A20)

Contents of each Record: Device Number in decimal
Device Number in octal
Device Name

The format required for the *comm.dat file is:
Fortran Format for each Record: (13X, A20,1X,A70)
Contents of each Record: Device Name
Device Description or Comments

It can be seen that the device number in decimal and octal are not needed
but that the user can leave them and merely add the description.

-64-

the format (13X,A20,1X,A70).

On the other hand, if the user desires, he can create the *comm.dat file
independently of the emulator using whatever method he desires, merely using

Following is an example of a *comm.dat file that was initially created by
turning on item S and then editing the output file::

5.4.1.2.4.1 Sample Device Comments File

FFA'CPUIC06
FFA'CPUIC13
FFA’CPUIC28
FFA’CPUIC71
FFAOCPUIC39
FFAOCPUIC40
FFAOCPUIC42
FFAQOCPUIC43
FFACPUIC06
FFACPUIC13
FFACPUIC21
FFACPUIC28
FFACPUIC71
FFB'CPUIC06
FFB'CPUIC13
FFB'CPUIC21
FFB'CPUIC28
FFB’CPUIC71
FFBOCPUIC39
FFBOCPUIC40
FFBOCPUIC42
FFBOCPUIC43
FFBCPUIC06
GAOBCPUIC29
GAOBCPUIC32
GAOBCPUIC35
GAOBCPUIC38
GAOCPUICO1
GAOCPUICO8
GAOCPUIC15
GAOCPUIC45
GAQCPUIC52
GAOCPUICS9
GAOCPUIC66
GAOCPUICT0
GAOLCPUIC29
GAOLCPUIC32
GAOLCPUIC35
GAOLCPUIC38
TSY3CPUIC39
TSY3CPUIC40
TSY3CPUIC42
TSY3CPUIC43

FOV single bit overflow flop
IND indirect storage flop
A* flop - repeat counter

FLAG1

bit 12 T register - 9407 mem addr processor
bit 8 T register - 9407 mem addr processor
bit 4 T register - 9407 mem addr processor

bit 0 T register

9407 mem addr processor

FOV* single bit overflow flop
IND* indirect storage flop
IR04 - instruction register
A flop - repeat counter

NOT USED

PFEIN interrupt enable flop

LINK used by micro program

IR05* - instruction register chip
B* flop - repeat counter

FLAG2

bit 12 P register

9407 mem addr processor

bit 8 P register - 9407 mem addr processor
bit 4 P register - 9407 mem addr processor
bit 0 P register - 9407 mem addr processor
PFEIN* interrupt enable flop
AO* RAM latch output* - 2901
AQ* RAM latch output* - 2901
AO* RAM latch output* - 2901
AQ* RAM latch output* - 2901

UMAC - micro memory prom address
UMAO - micro memory prom address
UMAO - micro memory prom address
addr input Y08 -~ START ADDR PROM
UMAO - micro memory prom address
UMAO - micro memory prom address
UMAO - micro memory prom address
addr input - sequence control PROM
A0 RAM latch output - 2901
A0 RAM latch output - 2901
A0 RAM latch output - 2901
A0 RAM latch output - 2901

D14 output - 9407 mem addr processor
D10 output - 9407 mem addr processor
D06 output - 9407 mem addr processor
D02 output - 9407 mem addr processor

—65—

3172 6144 TSY3CPUIC62 UMA9

3177 6151 TSY4CPUIC62 SPARE

3178 6152 ZDUMMYCLOCK

3179 6153 ZGTSQ1CPUIC30 DAT15 - output register and
3180 6154 ZGTSQ1CPUIC31 DATO7 - output register and
3196 6174 ZMEM1CON2

3197 6175 ZSELECTCPUIC MICRO MEMORY READ

For example, using the above as the *comm.dat file: if the device
FFA’'CPUIC06 were on the stack, the comment "FOV single bit overflow flop" would
be printed to the right of the device name. If the device ADUMMYINPUT were to
appear on the stack, no comment would appear, since that device does not appear
in this file. Also, if the device ZDUMMYCLOCK were to appear on the stack, no
comment would follow, since it appears in this file, but with no comment.

5.4.1.3 Initialization Output Files

5.4.1.3.1 Initialized System State File

The initialization program initializes the entire netlist, the external
registers, and the target memories and captures this initial state of the
entire system in a single binary file *save.dat. This file then becomes an
input to the emulator. This file must be created each time any part of the
netlist, target memories, device comments, or values in *iopts.dat changes.
Once the system state file has been created to the user’s satisfaction, the
initialization need not be run again. The system state file is transparent to
the user, other than the fact that he should be aware of its existence so that
he does not inadvertently delete it.

5.4.1.3.2 Initialization Text Output File

The contents of the initialization text output file(*iout.dat) created by
the initialization program are almost completely under the control of the user.
In the input file, *iopts.dat, he specifies what outputs he wishes to appear in
this file.

Mandatory Outputs

The first line of the file is the run date and time. The second line
begins with the text "TARGET MACHINE:" and is followed by the text which the
user inserted in item A of *iopts.dat.

If there are any gates in the netlist which have no inputs, then the third
line consists of the text:

"ASSIGNMENT OF 0/1 TO FOLLOWING GATES WITH NO INPUTS:", and is followed by a
list of devices for which no inputs were defined by the user. The initializer
thus assigned the output value(0 or 1 as specified in item C of *iopts.dat) to
all of these devices. If there were no such devices, this output does not

appear. .
Optional Outputs

—66—

All other outputs are optional and are controlled by the user in
*iopts.dat. The optional outputs are selected by the user in items I through T
in *iopts.dat. See Appendix B for an example of an Initialization Text Output
File.

5.4.1.3.3 Initialization Matrix File

If the user is planning to run an emulation on the QM-1, he must do an
initialization run in which he turns on item 14. This will cause the *mat.dat
file to be generated. This is a text file which contains the initialized
netlist in a form which can be processed by the QM-1.

5.4.1.3.4 Initialization External Registers File

If the user is planning to run an emulation on the QM-1, he must do an
initialization run in which he turns on item 43. This will cause the
*extrn.dat file to be generated. This is a text file which contains the
initialized external registers in a form which can be processed by the QM-1.

—-67-

5.4.2 Emulation on Vax

5.4.2.1 General

A given network can be emulated only after it has been initialized. The
inputs to the emulation process are : the Initial System State contained in a
binary file produced by the initialization, the Fault List, the Runtime Options
file, and the optional External Inputs. The Text Output file is always
produced, and its contents depend on the options the user has selected. The
principle output is the optional External Outputs File(s). Other optional
outputs are the control store and main store files for the QM-1.

Input Files

Required Input Files

*save.dat - The initialized system state, including the initial
contents of the target memories, produced in binary
form by the initialization program.

*eopts.dat The run-time emulation parameters. See Section
' 5.4.2.2.2,
*fault.dat The fault list.

Optional Input Files

** dat External Input files, named by the user

Output Files
Mandatory Output Files

*eout.dat Text output which varies according to the options
that the user has requested in *eopts.dat.

Optional Qutput Files

** _dat External Output files, named by the user
*gmcs .dat Control Store Initial Contents, for QM-1
*gqmms .dat Main Store Initial Contents, for QM-1
*summ.dat Timing Summary

** User specifies entire Vax Vms file name rather than just a prefix.

-68-

5.4.2.2 Emulation input Files

5.4.2.2.1 Initialized System State File

The initialization program initializes the entire netlist, the external
registers, and the target memories and captures this initial state of the
entire system in a single binary file *save.dat. This file then becomes an
input to the emulator. This file must be created each time any part of the
netlist, target memories, device comments, or values in *iopts.dat changes.
Once the system state file has been created to the user’s satisfaction, the
initialization need not be run again. The system state file is transparent to
the user, other than the fact that he should be aware of its existence so that
he does not inadvertently delete it.

5.4.2.2.2 Emulation Run-Time Options File

The emulation options file *eopts.dat is the input file which contains
parameters and user selections for the emulation run. This file allows the
user to vary the external inputs and external outputs for each run and also to
vary what outputs he wishes to have produced for each run, without having to
redefine the target machine, that is without having to rerun the
initialization. The emulation options file is usually prepared manually with
an editor. Listed below is a sample emulation options file. It can be used as
a template for the user’s preparation of his own file. Following the sample is
a description of each of the records in an emulation options file. In order to
facilitate the discussion, the individual records in the sample have been
labeled on the far right with capital letters which are then referred to as
record identifiers in the descriptions of the records. Some of the items in
this file are no longer used or are used only for debugging purposes. For that
reason, only the items currently used that are relevant to the general user are
so labeled. These capital letters are merely for documentation purposes. The
general user need only be concerned with the labeled items. The records not
labeled with a capital letter are not used (i.e., the values are "don’t care",
but must still be present).

All outputs requested in this file, except for external outputs, are
produced as part of the *eout.dat file. Item Y controls the time(s) at which
items K through Z6 will be produced. The external outputs are generated in
user-named files (see item BBl).

All items from A through 27 merely control the outputs which are to be
produced to enable the user to analyze how the emulation is proceeding. These
items in no way affect the emulation, and it is normal to produce none of them
once the emulation is working properly. On the other hand, items AA through
AA3 are the specifications for the external inputs and do affect the emulation.

See Appendix D for samples of the actual outputs produced.

-69-

0000000000000 0OOOOHORRRFROOO

5.4.2.2.2.1 Sample Emulation Run-Time Options File

Following is an example of an Emulation Options File, *eopts.dat. The
label for each record is a capital letter appearing to the far right of the
record. It is for documentation purposes only, and does not actually appear in
the record.

The output options 1-50 are switches which control which outputs are
produced. These options have no affect whatsoever on the emulation, but are
merely for the user’s benefit if he wishes to see the emulation process in more
detail (especially when the emulation is not working as expected). 1In each
case, a 1 means the option is turned on and the corresponding output will be
produced, while 0 means it will not.

Abbreviations:
In what follows, the abbreviation ei is used for
external inputs, and the abbreviation eo is used for
external outputs. The abbreviation cs is used for control store,
and ms is used for main store. An asterisk (*) preceding the
name of a file represents the user-supplied prefix.

Sample *eopts.dat File

Any Title : iTitle to describe the Batch
004000,004017 ¢cs low ,high address for dump

000100,000117 ms low, high address for dump

000000, 000010 1s low, high address for dump

1 not used *** First Output Option*#*
2 not used

3 not used

4 not used

5 not used
6
7
8
9

mQmy

not used
not used
control store memory dump
main store memory dump
10 local store memory dump
11 stack dump in full mode
12 not used
not used
14 not used
15 not used
16 not used
17 not used
18 not used
19 not used
20 not used
21 not used
22 not used
23 not used
24 Memory Dumps at Stop Time NN
25 not used
26 not used
27 not used

Z2=

Ses om0 G 4w Gt G St tan Gem G e G G Gme G G me S e Gw Sem G v G Sm b Smb 0 Sue
[
w

~70-

1 ! 28 time line T
0 ! 29 stack size U
0 ! 30 stack dump in abbreviated mode \
1 1 31 insertion and lifting of gate faults W
1 ! 32 not used

1 ! 33 insertion and lifting of memory faults DD
1 ! 34 partial fault list DDl
0 ! 35 scheduling and insertion of external inputs EE
0 ! 36 not used

0 ! 37 not used

1 ! 38 scheduling and generation of external outputs FF
0 ! 39 not used

0 ! 40 run numbers GG
0 ! 41 fault file for QM-1 HH
0 ! 42 memory dumps at action-scheduling times II
0 ! 43 not used

0 ! 44 external input list and ei registers for QM-1

JJ

0 ! 45 external output registers for QM-1

KK

0 ! 46 abbreviated run to produce QM-1 data only

LL

0 ! 47 not used

0 ! 48 not used

0 ! 49 not used

0 ! 50 not used ***Last Output Option*»*
1,180,1 I start,stop,delta times, for outputs

180 ! stop time (not used)

DEVICET ! Device Name(s) for Trace 7
*okkkk ~ ! Sentinel for trace devices A
time= 0 004001 004013 ! User dump specifications 22
(1x,a7,1x,i5,1x,06,4x%,10(i1)) ! Format for user-specified dump 23
ok ok ek ! Sentinel for User dump selections z24
DEVICEH ! Devices to have state info dumped 25
Fekodeok ok ! Sentinel for state info.devices z6
1 ! Number of external input lists AA
[bb.edata.toy.ei]toyeil.dat !name of file containing list AR
8 ‘no. of bits in each data item AA2
TSY2U66 {name of fanout device AA3
TSY1U66 " AA3
TSY3U66 " AA3
TSY4U66 " AA3
TSY2U65 " AA3
TSY1U65 " AA3
TSY3U65 " AA3
TSY4U65 " AA3
1 !number of external output sets BB
eofilel.dat loutput file name for this eo set BB1
4 !no. of bits in each output this set BB2
100 !maximum number of items in eo buffer BB3
004440 !cs data register address this set BB4
1,25,1 treschedule flag, start time, delta time for rescheduling BB5

-71-

5.4.2.2.2.2 Record Descriptions for Emul. Run-Time Options File
Description of Records in *eopts.dat File
Formats:
In each item, the Fortran format follows in parentheses after
the name of the item.

A Title (10A4) : Any descriptive title for the Batch.
This title will appear at the beginning of the emulation
output file *eout.dat, following the title for the
target machine and preceded by "BATCH:" (One should be sure
to begin any comments beyond column 40).

F QM-1 Control Store Dump Locations (06,1X,06)
The starting address(in octal) of the block of control store to
be dumped, followed by the ending address(in octal) of the
block of control store to be dumped. The dump takes place
only if print option 8 (item K) is on, and occurs at the
times specified in item Y. It also takes place at termination time
if option 24 (NN) is on.

G QM-1 Main Store Dump Locations (06,1X,06)
Same as F, but for Main Store and print option 9(item L).
It also takes place at termination time if option 24 (NN) is on.

H OM-1 Local Store Dump Locations (06,1X,06)
Same as G, but for Local Store and print option 10(item M).

K Control Store Dump Option (Il)
1f this option is on, the control store range specified in item F
will be dumped at times specified in item Y.

L Main Store Dump Option (Il)
If this option is on, the main store range specified in item G
will be dumped at times specified in item Y.

M Local Store Dump Option (I1)
If this option is on, the local store range specified in item H
will be dumped at times specified in item Y.

N Stack Dump in Full Mode (I1)
1f this option is on, the selected stack items (either the entire
stack or a trace stack) will be dumped in the full format
mode (see Section 5.4.2.3.2)

NN Memory Dumps at Stop Time(Il)
I1f this option is on, a control store memory dump and main store dump

will take place at the stop time for each run.
T Time Line (I1)
If this option is on, the time line will be dumped as a single
line by itself. This option would only be used if item N is
not on, and one wishes to see the time line. See Section 5.4.2.3.2.
U Stack Size (Il)
I1f this option is on, the number of items in the stack will

-72-

DD

DD1

EE

FF

I1

JJ

LL

be dumped, but not the stack itself.

Stack Dump in Abbreviated Mode (Il)
1f this option is on, the selected stack items (either the complete
stack or a trace stack) will be dumped in the abbreviated format
mode. See Section 5.4.2.3.2.

Insertion and Lifting of Gate Faults (Il)
If this option is on, each time a gate fault is inserted or
lifted, the relevant information, namely the time, the
name of the device, and the particular action will be dumped.

Insertion and Lifting of Memory Faults (I1)
If this option is on, each time a memory fault is inserted or
lifted, the relevant information will be dumped.

Partial Fault Buffer Dump
If this option is on, the first 100(octal) locations and the
last 27(octal) locations of the fault buffer will be dumped.

Scheduling and Insertion of External Inputs (I1)
i1f this option is on, each time an external input is
scheduled and/or inserted, the relevant information will be dumped.

Scheduling and Generation of External Outputs (I1)
If this option is on, each time an external output is
scheduled/generated, the relevant information will be dumped.

Run Numbers (Il)
If this option is on, numbers are assigned sequentially, starting
at 1, to the runs in a batch, and are dumped at the beginning
of each run.

Fault File for QM-1 (I1)
If this option is on, a file *gmms.dat containing the fault list will
be produced which can be sent to the QM-1 for emulation on that

machine.

Memory Dumps at Action Scheduling Times (I1)
If this option is on, a control store memory dump and main store
memory dump will take place each time an action is scheduled.

External Input Data for QM-1 (Il)
If this option is turned on, then the external input list is produced
in file *gmms.dat for the OM-1, and the external input data and
address registers are produced in file *gmcs.dat for the QM-1.

External Output Data for QM-1 (Il)
If this option is turned on, then the external output registers are
produced in file *gmecs.dat for the QM-1.

Abbreviated Run for QM-1 File Generation (I1)

-73-

If this option is on with any of options HH, JJ, and KK turned on,
then the program will produce the output files for the QM-1 and stop
without doing any emulation. Thus this should be turned on if one
wishes to do the emulation runs on the QM-1 but not on the Vax. On
the other hand, one can turn on items HH, JJ, and KK, and LL and
perform emulation on both the QM-1 and the Vax.

Dump Option Time Window (*)
The start time, stop time, and time interval (in units of stacks)
at which all the selected outputs K through Z6 will be produced.

Names of Devices to be Traced (A20)

The names of all devices which are to be traced, i.e., dumped when
they appear on the stack. See Section 5.4.2.3.2. 1If one or more
devices appear in this item, then the full stack will not be dumped,
but only the devices listed here (when they appear on the stack).

The names can appear in any order. If no names appear here, and
items N and V are off, no stack will be dumped; however, the sentinel
(item Z1) must be present in any case. If any comments are to be
present in the record, one should be sure to begin the comment beyond
column 20. There will be one item 2 record for each device to be
traced.

Sentinel for Trace Devices (A20)

This record signals that no more trace device names follow. This
record must always be present, whether or not there are any trace
devices listed. This record must have an asterisk in each of columns
1 through 5.

User-Defined Dump Specifications Part 1 (A20,1X,I1,1X,06,1X,06)

Items F through M allow the user to dump portions of control store,
main store, and/or local store at times specified in item Y. The
advantage of using items F through M is that the program produces the
dump in a fixed format about which the user need not be concerned.
The disadvantages of using items F through M are that only one
contiquous section of control store, one section of main store, and
one section of local store can be dumped, and this is always done in
a fixed format. In order to overcome these disadvantages, one can
use items 2Z2 and 2z3. These items allow the user to define what he
would like to dump and in what format he would like to see this dump.
It is possible to define up to 15 (maxupch) different Dump
Specifications. Each dump specification consists of two records,
namely items 22 and 23. 1Item 22 specifies what is to be dumped, and
item Z3 specifies in what format the data is to be dumped. Thus it
is possible to dump up to 15 different contiquous portions of control
store, main store, and/or local store in user—defined valid Fortran
77 formats. If the user does not wish to have any user-defined dump
specifications, there should be no 22 or Z3 records, but there must
always be one 24 record.

Record Z2 contains:
1. The literal characters or title to be printed preceding the
dump
2. The memory-type flag (O=control store, l=main store, 2=local
store)

-74-

.

’

Z3

z4

z5

Z6

BB

3. The starting location to be dumped
4. The ending location to be dumped

User-defined Dump Specifications Part 2 (A80)
The second record, Z3, contains the Fortran format statement
(enclosed in parentheses) in which the data which was defined in part
1 is to be dumped.

Sentinel for User-defined Dump Specifications (A20)
This record signals that no more user-defined dump specifications
follow. This record must always be present, whether or not there are
any user—defined dump specifications. This record must have an
asterisk in each of columns 1 through 5.

Names of Devices for which State Information will be Dumped
The header word for each device contains all the state information
for that device. The user would use item 25 if he wishes to examine
the state(s) of one or more particular devices at specified times
during the emulation. There should be one 25 record for each device
for which state information is to be produced. It should be noted
that it is possible to have header information of a given device
change without having the device appear on the stack (e.g., an
enabling or disabling of a tri-state). This item may have no devices
in it; however, the sentinel, item Z6 must always be present.

Sentinel for State Information Devices (A20)
This record signals that no more state information device names
follow. This record must always be present, whether or not there are
any state information devices listed. This record must have an
asterisk in each of columns 1 through 5.

Number of External Input Sets (#*)
If this value is zero, then items AAl through AA3 are left out.
1f this value is not zero, then the group of items AAl through
AA3 must appear once for each external input set.

Name of File containing the external input list (A40)
The file named here contains the actual data to be inputted
from external sources during the run. See Section 5.4.2.2.4.
for a complete description of this file.

Number of Bits in each data item (*)
This is the number of bits that must be supplied in the ei file each
time the data is to be inserted into the network. The maximum number
of bits is 32.

Name of fanout device (A20)
There must be as many devices listed as the number of bits specified
in AR2 above. Each device will receive as input the bit specified in
the data. The first device named will receive the most significant
bit, and the last device the least significant bit. There will be
one device named on each AA3 record.

Number of External Output Sets (*)

75—

BBl

BB2

BB3

BB4

BB5

If this value is zero, then items BBl through BB5 are left out. If
this value is not zero, then the group of items BBl thtough BBS must
appear once for each external output set.

Name of File to receive the output data (A40)
The file named here will be written to at the completion of the batch
run and will contain the time-tagged data for this external output
set for all runs in the batch.
See Section 5.4.2.3.3 for a complete description of this file.

Number of Bits in each data item (*)
This is the number of bits that will be dumped to the external output
file each time the data is requested. The first bit dumped is the
leftmost bit at the address specified in BB4, and bits are dumped
rightward and from ascending locations. The largest acceptable value
for this field is 126(decimal).

Maximum number of items in the buffer (*)
This is the largest number of items this data set is expected to
generate during the entire batch run. It is used for storage
allocation.

Control Store Address of External Output Data Register (O6)
The address in control store of the first data register to be dumped

for the external output set.
Reschedule Flag, Start Time, Delta Time for External Outputs (*)

Reschedule flag: if this value is zero, then the scheduling of this
external output set is controlled by internal logic, i.e., when a
specified devices goes high, the output is produced but otherwise
the output is not produced. If this value is one, then the emulator
does automatic rescheduling of this external output, starting at the
specified start time, and at intervals of the specified delta time,
until the end of the run.

Start time: The first time at which this output is to be
automatically scheduled, if reschedule flag =1 (otherwise not used).

Delta time: The time increment between automatic rescheduling, if
reschedule flag=1 (otherwise not used).

5.4.2.2.3 Fault List File

5.4.2.2.3.1 Contents of the File

In the fault list file, *fault.dat, the user specifies all "operations"

to be performed for the batch. A batch consists of one or more "runs” for
the same target machine. A run begins at time 1 and continues until the stop
time designated in the fault list for that run. The parameters which the
user must supply depend upon the particular operation.

The time given is in units of the basic clock ticks or numbers of stacks

of the emulator. For each run in the batch, any number of operations may be

=76-

N

specified. There will be a maximum number of operations that can be
accomodated for the entire batch, and if this number is exceeded, the user
will be notified. Within each run, the operations must be in ascending time
order. Valid operations, their corresponding op codes used in the fault
list, and the parameters required for each are listed below:

Op Code Operation Parameters Required
1 Stop Batch
2 Stop Run Time
3 Stick Gate at 0 Time, Gate Name
4 Stick Gate at 1 Time, Gate Name
5 Lift Gate Fault Time, Gate Name
6 Insert Fault in ROM Time, Memory Id, Word Id, Bit Position
7 Lift Fault from ROM Time, Memory 1d, Word Id, Bit Position

valid Op Codes

Figure 17

Stop Run
The user specifies the time at which the run is to terminate. There
must be one "stop run" operation as the last operation for each run. 1t is
possible that the "stop run" may be the only operation for the run.

Stick Gate at 0/1

The user may apply faults to simple gates. The faults that are
applied are "stuck at" faults. The user specifies the gate name, whether
the gate is to be stuck at 0 or 1 (by the op code) , and at what time the
gate is to be stuck. For a gate to be stuck at 0 means that the output
line of the gate will remain at 0 no matter what the input values happen to
be; when a gate is stuck at 1, the output line will remain at 1 no matter
what the input values happen to be. The gate remains stuck until a "lift
gate fault" is applied to the gate.

Only simple gates may be faulted (AND, NAND, OR, NOR, XOR, NXOR). 1%
one wishes to fault a flip-flop, then the flip-flop could be modeled as a
set of gates, or a dummy gate could be inserted whose input is the output
of the flip-flop, and the dummy gate could be faulted. If one wishes to
fault a tri-state, the same is true as for flip-flops.

When a user specifies that a gate is to be stuck at time T, the fault
actually becomes effective at time T+l1. If one wishes t- have a gate stuck
from the very beginning of a run (T=1), then the time given with the op
code should be 0.

Lift Gate Fault

When one wishes to remove a fault from a gate, he supplies the gate
name and the time at which the fault is to be lifted. The user should not
request that a fault be lifted from a gate unless a fault has previously
been inserted and not yet lifted. Again, when a user specifies that a
fault be lifted at time T, the lifting of the fault will be effective at

~77-

time T+l. WwWhen the fault is lifted, the output line of the gate will then
again accurately reflect the values on the input lines.

It is possible in a particular run at present, to assert up to 30 gate
fault insertions and/or lifts at the same time. This maximum can be
increased if necessary. See Section 5.2.3.

Insert Fault in ROM

In order to insert a fault into a ROM, the user must specify the time
at which the fault is to be inserted, the identification number of the
particular rom, the address of the word to be faulted and the bit position
of the bit to be faulted. Faulting a bit in a ROM is equivalent to
complementing the correct value.

Lift Fault from ROM

One may request that a fault which has been previously inserted into a
ROM be removed. Removing the fault is equivalent to complementing the
value currently in the specified bit position, or in other words, returning
it to its original value. Note that if one tries to lift a fault which has
not previously been inserted, then one has effectively inserted a fault,
since the existing bit is merely complemented. When a user specifies that
a ROM fault be inserted or lifted at time T, the operation is actually
effective at time T.

Stop Batch

This operation is unique in that it may not be specified by the user. The
emulation automatically adds a "stop batch" code at the end of the fault
buffer. Its execution causes the entire batch job to be terminated. This
operation is basically transparent to the user.

5.4.2.2.3.2 Structure of the File

The first record of the file is a title which will be printed in the
output file. Following the title is a list of "operations" to be executed
for run 1, followed by operations for run 2, etc. There is no limit on the
number of operations for each run. The minimum number of operations per run
is one. There must be one "stop run" operation as the last operation for
each run. In this "stop run" operation the user specifies at what time the
run is to terminate. Each run may thus have a different stop time. It is
possible that the "stop run" may be the only operation for the run. Thus
every fault file must have at least two records, namely the title record and
at least one "stop run" operation. Operations for any particular run
consist of a sequence of operations which must be in ascending order by time.
The structure of the file is show below (assuming n runs in the batch):

File Structure

Title Record
Operations for Run 1

-78-

Operations for Run 2

Operations for Run n

Record Structures

The number of records required for each operation is dependent on the
particular operation; however, record 1 for each operation has the same
format. The record contents and formats are:

Title Record
Format: (A40)
Contents: The first record of the file contains a title which will be
printed at the beginning of the output file *eout.dat
preceded by "Operations :"

Operations for Each Run

Valid operations, their corresponding op codes used in the fault list,
and the parameters required for each are listed below:

Op Code Operation Parameters Required
1 Stop Batch
2 Stop Run Time
3 Stick Gate at 0 Time, Gate Name
4 Stick Gate at 1 Time, Gate Name
5 Lift Gate Fault Time, Gate Name
6 Insert Fault in ROM Time, Memory Id, Word Id, Bit Pos
7 Lift Fault from ROM Time, Memory Id, Word Id, Bit Pos

Record Formats

Stop Run (op code = 2)

Record 1: op code, time format(*)
Stick Gate at 0 (op code = 3)

Record 1: op code, time format(*)

Record 2: device name format(a20)

Stick Gate at 1 (op code = 4)
Record 1: op code, time format(*)
Record 2: device name format(a20)

Lift Gate Fault (op code = 5)
Record 1: op code, time format(*)

~79-

Record 2: device name format(a20)

Insert Fault in Rom (op code = 6)
Record 1: op code, time format(*)
Record 2: Memory Id, Word Id, Bit Position format(*)

Lift Fault from Rom (op code = 7)
Record 1: op code, time format(*)
Record 2: Memory 1d, Word Id, Bit Position format(*)

Following are descriptions of the individual items in the records:

Op Code: The one-digit code for the operation to be performed (see
table above).

Time: The time at which the operation is to be performed, in units
of emulator clocks or stacks. It should be noted that for op codes
3, 4, and 5, the sticking/lifting of the gate fault doesn’t become

effective until one clock after the time specified here.

Device name : the name of the device which is to be faulted or to
have the fault lifted.

Memory Id° :The memories are automatically numbered consecutively by
the emulator, beginning with 1, in the order in which they appear in
*mems.dat. This number is the Memory Id.

Bit Id:The bit id is the bit position in the target machine. The
bits are numbered with bit position zero as the least significant
position.

Word 1d:The word id is the address containing the bit which is to be
faulted. The word id is the actual target machine address if the
emulator has performed the relocation to the QM-1 memory, but must be
the absolute QM-1 address if the user did the relocation manually.
See Section 5.4.1.2.3.2, items V1...Vn for a discussion of memory
relocation.

Comments in Records:
Any record with * format can have a space after the last number and
the rest of the record can contain comments. Any record with an A
format can have comments after the last column specified for the
character string.

5.4.2.2.3.3 Sample Fault List File

Insert and Lift Gate and Memory Faults ITitle

4,5 !Run 1: stick gate named AND43 to 1 at time S
AND43

2,40 ! stop run 1 at time 40

3,124 !Run 2: stick gate named AND44 to 0 at time 12
AND4

-80-

4,12
OR62
5,50
AND44
2,100
6,60
3,1000,13
7,70
3,1000,13
2,150

! stick gate named OR62 to 1 at time 12
! lift fault from gate named AND44 at time 50

! stop run 2 at time 100
!Run 3: insert fault in ROM at time 60
! stick bit 13 of word 1000 in memory 3
lift fault from ROM at time 70

lift from bit 13 of word 1000 in memory 3
stop run 3 at time 150

= pm o

5.4.2.2.4 External Input Files

For each external input set that exists, the user must create one external
input file for which he specifies the Vax Vms file name. No external input
files are necessary if item AA in *eopts.dat is zero.

5.4.2.2.4.1 Contents and Structure of External Input Files

If item AA of file *eopts.dat is not zero, then one external input
file must be created by the user in any manner he chooses for each
external input set. The format for each such file is described
below:

The file containing the actual external inputs list consists of
one record for each insertion of an external input. Each record
contains the time followed by the data bits to be inserted, in the
following format:

(bn,il10,1x,011)
The times for a given set must be in ascending order, and the data

bits must be right justified. The maximum number of bits tc be
inputted in one data item is 32.

5.4.2.2.4.2 Sample External Input Files
Following are the entries in *eopts.dat which specify external input files:

4

combeil .dat
7

TS2G01
TS2G02
TS2G03
TS2G05
TS2G06
TS2G07
TS2G08
combeil.dat
1

!nexinp no. of ei lists
!file name of first ei list

ino. of bits in first list

'names of devices feeding this list

!file name of second ei list

-81-

TS2G00
combei3.dat !file name of third ei list
1

TS1G00
combeid.dat 1file name of fourth ei list

1
TS1G01

Following are contents of file COMBEIl.DAT

1 000 combeil.dat bal-bd2
Following are contents of file COMBEI2.DAT

1 0 combei2.dat ts2g00-—--bal
18 1

28 0

Following are contents of file COMBEI3.DAT

1 0 combei3.dat tslg00

Following are contents of file COMBEI4.DAT

1 0 combeid.dat tslgOl
40
61
180
201

OmOM

5.4.2.3 Emulation Output Files

5.4.2.3.1 Text Output File

The contents of the emulation text output file(*eout.dat) created by the
emulation program are almost completely under the control of the user. In the
run options file, *eopts.dat, he specifies what outputs he wishes to appear in
this file. See Appendix D for ten different samples of outputs produced by
specific settings in *eopts.dat. Below is an explanation of these ten

examples:
Outputs Which Appear in Every Run

Example 1:

Actual Date and time the run began.

Text which the user inserted in item A of file *iopts.dat.

Text which the user inserted in item A of file *eopts.dat.

Text which the user inserted as the first line in the file *fault.dat.
Emulation time at which the run completed.

Average stack size, minimum stack size, and maximm stack size over the
entire run.

Actual Date and time the run ended.

~J B W

Optional Outputs

-82-

All other outputs are optional and are controlled by the user in file
*eopts.dat. The optional outputs are selected by the user in items F through
26 in *eopts.dat. See Appendix D for examples of all of these outputs. Below
are explanations for the cxamples.

Example 2:
Run Numbers (Item GG, Print Option 40)

1 The number of the run within the batch. (the runs are automatically
numbered by the program in the order in which they occur in the
fault file.

Stack Size (Item U, Print Option 29)

4 Slack size, i.e., Lhe number ob devices on the -urtent stack, in
octal.

3 Current time, in octal.

4 Stack size, in decimal.

5 Current time, in decimal.

Termination Dump (Item NN, Print Option 24)

6 Dump, in octal, of control store, local store, and main store at
Termination Time.

Example 3:
Control Store Dump (Item K, Option 8)

Current time, in octal.

Current time, in decimal.

Address of first control store location dumped, in octal.
Contents, in octal, of successive control store locations,

beginning with address in 3 above.

[NV S)

Main Store Dump (Item L, Option 9)

5 Current time, in octal.
6 Current time, in decimal.
7 Address of first main store location dumped, in octal.
8 Contents, in octal, of successive main store locations, beginning
with address in 7 above.
Example 4:

Time Line (Item T, Option 28)

Current time, in octal

Current time, in decimal

The average size of the full stack as of the current time
The size of the smallest stack as of the current time
The size of the largest stack as of the current time

bW

-83-

6 The static average fanout for the netlist, i.e., within the
specified netlist, the average number of devices to which a device
feeds.

7 The dynamic average number of destination devices examined for each
source device on the stack, i.e., the average fanout for the
devices which have been on the stack through the current time.

8 The dynamic average number of destination devices enqueued for each
source device on the stack, i.e., the average number of devices
whose output values have changed per each source device which has
been on the stack through the current time.

Example 5:
Stack Dump in Abbreviated Mode (Item V, Option 30)

1 Current time, in decimal.
2 Name of Device on stack.
3 Value on output line of device named.

Example 6:
Insertion and Lifting of Gate Faults (Item W, Option 31)

Time at which fault was inserted, in octal.

Time at which fault was inserted, in decimal.

Value at which the output line of the gate was stuck.
Name of the device which was faulted.

Time at which fault was lifted, in octal.

Time at which fault was lifted, in decimal.

Name of the device whose fault was lifted.

ST W

Example 7:
Insertion and Lifting of Memory Faults (Item DD, Option 33)

Time at which fault was inserted, in octal.

Time at which fault was inserted, in decimal.
Memory Id into which fault was inserted.

Target Address into which fault was inserted.
Target Bit Number into which fault was inserted.
Absolute QM-1 address which holds faulted word.
Contents of QM-1 address prior to faulting.

Bit position of faulted bit, in QM-1 word.
Contents of QM-1 address after faulting.

10 Time at which fault was lifted, in octal.

11 Time at which fault was lifted, in decimal.

12 Memory Id from which fault was lifted.

13 Target Address from which fault was lifted.

14 Target Bit Number from which fault was lifted.
15 Absolute QM-1 address which holds fault to be lifted.
16 Contents of QM-1 address prior to lifting.

17 Bit position of faulted bit, in QM-1 word.

18 Contents of QM-1 address after lifting.

WOO-JOUTH WN =

-84-

Example 8: Trace Stack (Items Z and Z1)

All items are the same as for example 10, except that item 9 will read
"Prace Stack", and the only devices which will be outputted when they
are on the stack are those whose names are listed in item Z of
*eopts.dat.

Example 9: Device State Information (Items z5 and 26)

1 Current time, in octal.

2 Current time, in decimal.

3 Device Index Number.

4 Device Name.

5 Device Header Word, in octal (contains state information).

6 The QM-1 address of the header word for this device, in octal.
Example 10:

Stack Dump in Full Mode (Item N, Print Option 11)

Time of stack dump, in octal

Time of stack dump, in decimal

The average size of the full stack as of the current time

The size of the smallest stack as of the current time

The size of the largest stack as of the current time

The static average fanout for the netlist, i.e., within the
specified netlist, the average number of devices to which a device
feeds.

7 The dynamic average number of destination devices examined for each
source device on the stack, i.e., the average fanout for the
devices which have been on the stack through the current time.

8 The dynamic average number of destination devices enqueued for each
source device on the stack, i.e., the average number of devices
whose output values have changed per each source device which has
been on the stack through the current time.

9 Description of what Selection Attribute the stack has, namely a
"Complete" stack or a "Trace" stack

10 Sequintial number representing the position of this item on the
stac

11 The device index number of this device, in decimal.

12 The QM-1 address of the header word for this device, in octal.

13 The device name.

14 The value on the output line of the device.

15 The header word for this device, in octal.

16 The header word for this device, in binary.

17 The descriptive comment listed for this device in the Device

Comments File. If no comment was given for this device, this field

is blank.

AN W

5.4.2.3.2 Stack Outputs
A stack dump consists of a list of devices which are on the current stack.

This dump has two attributes, namely the selection attribute and the format
attribute. The selection attribute controls which devices will be selected for

—85—

printing, and the format attribute controls what information will be printed
for each device that is selected. The attributes are selected by the user in
the run options file *eopts.dat (see Section 5.4.2.2.2)

Selection Attribute:

Complete-Stack Mode:

In this mode, all devices that are currently on the stack are
printed.

This mode is used if no device names are listed in item 2, and
either item N or V is turned on.

Trace-Stack Mode:

In this mode, the user is attempting to trace the activity of
specific devices and does not wish to see all the devices which are
on the stack. He thus selects in item Z only the specific devices
which he wishes to "trace", and when the stack is dumped, only those
devices which he has selected will be dumped.

This mode is used if at least one device name is listed in item Z.
Format Attribute:

Full Mode:
In the full mode, the first line is always the Time Line which
contains the current time in octal and in decimal,the average stack
size, the minimum stack size, the maximum stack size, the average
static fanout, average dynamic fanout examined during processing of
stacks, and average dynamic fanout changing in value. Following the
time line, every selected device from the current stack is dumped
with its position on the stack, the device identification number,
the header address in octal, the device name, the header contents in
octal and in binary, and the user-supplied device description (if
any) from *comm.dat.

Full mode is selected by turning on option 11 (item N).

Abbreviated Mode:
In the abbreviated format mode, no time line is printed, and each
device selected is printed in an abbreviated mode. .For each device
that has been selected, the only items printed are the current time,
the device name, and the output value of the device.

Abbreviated mode is selected by turning on option 30 (Item V).
Note: If neither full mode nor abbreviated mode is selected, then
full mode will be used. 1If both full mode and abbreviated mode
are selected, then abbreviated mode will be used.

Following is a table showing the results of all combinations of input
options:

-86-

Item N Item V Item Z Result
Selection Format

0 0 no device no stack

0 0 some device Trace Full

0 1 no device Complete Abbreviated
0 1 some device Trace Abbreviated
1 0 no device Complete Full

1 0 some device Trace Full

1 1 no device Complete Abbreviated
1 1 some device Trace Abbreviated

(See Section 5.4.2.3.1 and Appendix D for examples of stack outputs.)

5.4.2.3.3 External Output Files

For a given batch, there may be zero or more external output files
created. See Section 4.3.10.5 for a discussion of external outputs and Section
5.2.5 for a discussion of setup of external outputs. An output file will be
written for each external output set at the completion of each batch.

5.4.2.3.3.1 Contents and Structure of External Output Files

In *eopts.dat, the user specifies the Vax Vms name he has selected for
each external output file. For a given batch, the user-specifications for a
specific external output set are the same for each run, but the outputs
produced will probably differ from run to run due to the differences in the
fault list for each run. Within each output file in ascending time sequence
will be one entry for each time the external output action was triggered.
Within a given external output file, the first entry for run i+l will
immediately follow the last entry for run i. Each entry consists of the time
the action was triggered followed by the data at that time. The format for one
entry is:

From the Vax Emulator: (112/(1007))
From the QM-1 Emulator (after being transferred to vax): (1x,1007)
One could process the external output files directly in either of of these

formats; however, if one wishes to convert the QM-1 format to the Vax format,
see Section 5.4.2.5.

5.4.2.3.3.2 Sample External Output File
Following are items from *eopts.dat which specify external output sets:

3 tno. of external output sets

combeol .dat tfile name for first eo set

7 !number of bits in each entry

500 !max no. of items in eo buffer

004003 !control store address of data register
0,1,1 !reschedule flag,start time,delta time

-87-

combeo2.dat
6

500

004004
0,1,1
combeo3.dat
14

500

004006
0,1,1

tfile name for second eo set

1file name for third eo set

Following is external output file COMBEOl.DAT:

20
40000
34
40000
48
240000
62\
24000
76
0 -
90

104

0

40000
118

40000
132

40000
146

40000
160

40000
174

40000
188

240000
202

24000
216

0

5.4.2.4 Running Emulator on Vax

Notation:

user represents the name of the user’s root directory (without the

brackets).

For example, if the user’s root directory is [Smith], then in

this document, user represents Smith.

-88-

Userdata represents the directory and prefix name of the user’s data
files. For example, if the directory holding the data is named
{smith.data], and all input files begin with prefix "counter", i.e., they
are named counternet.dat, countermems.dat, counteriopts.dat,
countercomm.dat, countereopts.dat,and counterfault.dat, then in this case
Userdata represents [smith.data]counter.

Underlining implies a command which the user inputs to Vax VMS.

Make addition to login.com file.
Insert a command into your login.com file which sets the symbol
"demuser" to the name of your root directory (without the brackets). For
example, if the name of your root directory is [Smith], then insert the
following command into your login.com file:

Sdemusert==Smith

To Run Initialization

1. Prepare input data files.
2. Se[user.dem.runliemu Userdata

To Run Emulation

1. Prepare input data files.
2. Se[user.dem.run]emu Userdata

Example:

Assumptions: Command files will reside on directory [smith.dem.run)
Data will reside on directory [smith.data], and prefix for all data
files is "counter".

1. Create input data files with prefix "counter" on directory [smith.data}.

2. $@[smith.dem.runliemu [smith.data]counter (Run initialization)

3. S$@[smith.dem.runjemu [smith.data]counter (Run emulation)

5.4.2.5 External Outputs Postprocessing

Reason for External Outputs Conversion
When the emulation has been performed on the Vax computer, the external

outputs file is generated with format (I12/(1007)) for each external output
record.

-89-

External output files which have been produced as a result of running an
emulation on the OM-1 and which have been transferred back to the Vax are in
OM-1 format which is: (1x,1007)

One could choose to process, on the Vax, the external output file from the
QM-1, as is, and then no conversion would be necessary; however, if one
wishes the external output file from the QM-1 to be in the same format as
the external output files produced by the Vax emulator, which is:
i12/(1007), then one could use the external outputs conversion program.

It should be noted that the current form of the conversion program assumes
there are four QM-1 words outputted for each external outputs triggering;
one could modify the source code if this number is different from four.

EoQM1iformat represents the directory and file name of the external output
file which was transferred from the QM-1 to the Vax after the
QM-1 emulation run.

EoVaxformat represents the directofy and file name of the external output file
which has been converted to Vax format.

Make addition to login.com file:
Insert a command into your login.com file which sets the symbol
"demuser" to the name of your root directory (without the brackets). For
example, if the name of your root directory is [Smith], then insert the
following command into your login.com file:
| $demuser:==Smith

Note: (Underlining implies a command which the user inputs to Vax vms.)

To make changes to existing conversion Program:

$set default [user.dem.emulator]
Edit appropriate fortran module (either conveogv or tconveogv!) in

[user.dem.emulator]
Do Fortran compiles of appropriate module(s)
sefuser.dem.run]linkconveogv (links conversion programs)

To Run Conversion

Transfer external output file from QM-1 to Vax on Userdata

se{user.dem.run]conveogqv EoQM1format EoVaxformat

{to convert without setting of high-order time bit)!, or
se[user.dem. run]tconveoqv E0QM1format EoVaxformat

(to convert with setting of high-order time bit):

-90-

Example:

Assumptions: Programs will reside on directory (smith.dem.emulator],

data will reside on directory [smith.data], and prefix for all data
files is "counter".

1. Transfer external output file from QM-1 to Vax on [smith.data)
The external output file transferred from the QM-1 is
countergmleo.dat, and the new file in Vax format is to be named
counterVaxeo.dat:

3. $@[smith.dem.run]conveogv [smith.data]countergmleo.dat

{smith.data]countervVaxeo.dat

1 During the transfer from the QM-1 to the Vax, the two high order bits of
eighteen are not transferred (i.e., only 16 bits are transferred). If
these two high order bits are not needed, use conveoqv. If the high order
bit is needed, use tconveoqv.

5.4.3 Emulation on QM-1
5.4.3.1 Creation of QM-1 Files:

A,

Use Nova Files Utility to create the following files:
(assume * is the user-selected prefix for all the files)

*:E
*COMP
*CS
*CS:S
*EXT
*EXT:S
*MAT
*MAT:S
*MEMC
*MEMC:S
*MEMM
*MEMM: S
*MS
*MS:S
*PAR
*PAR:S
*TCOMP

When the Diagnostic Emulation System Tape was restored to disk, three
sets of files beginning with the prefixes "ONEC", "GFO1", and "GF02",
were created on user 6 of the disk. If one wishes to use any of these
prefixes, he can make use of these files and thereby not have to
create his own. 1In any case, ONECPAR:S and ONEC:E should be copied to
create *PAR:S and *E:S respectively.

B.

Use Editor to customize *TCOMP AND *:E.
The references to all data files must be changed to contain the
appropriate prefix.

-91-

C. Use Editor to customize *PAR:S and *:E.
The following control store locations must contain the specified
values:
Location Value
147 address of top of first stack) + 1
601 address of memory control block
602 number of memory control records
603 memory master control store address
605 free space address
613 address of main store fault block
614 control store address of faulting device
615 address of operations action data structure

5.4.3.2 Data Preparation

A. Preparation of Data for Target Computer
(theoretically this step only need be done once)

1. Conversion and transfer of Memories file, *mems.dat.
a)on Vax Side:
1)Be sure all references to devices in *mems.dat have a ’'D’ or ’'d’
in column 1 instead of ’C’ or 'c’ (see()).

2)

3)

4)

5)
6)

7)

$e[user.dem. run]convmems Userdata

This step produces a file *memsq.dat which is memories file in
QM-1 format.

Use a Vax editor to split *memsq.dat into *memc.dat and
*memm.dat, where *memc.dat is the control store part and
*memm.dat is the main store part.

Use the Vax-to-QM-1 Transfer program to transfer *memc.dat
from the Vax to the QM-1.

On the QM-1 side: !!COPYSN DESTFILE *MEMC:S

Use the Vax-to-QM-1 Transfer program to transfer *memm.dat
from the Vax to the QM-1.

Oon the gM-1 side: ! !COPYSN DESTFILE *MEMM:S

2. Transfer of Net List and External Registers.

a)Run initialization program on Vax with print option 14 and print
option 43 turned on.

! This produces a file *mat.dat, which is the netlist in QM-1
format, and a file *extrn.dat, which is the file of external
registers in QM-1 format.

i 1)

2)
3)

Use the Vax-to-QM-1 Transfer program to transfer *mat.dat from
the Vax to the QM-1.

On the QM-1 side: !!COPYSN DESTFILE *MAT:S

Use the Vax-to-QM-1 Transfer program to transfer *extrn.dat
from the Vax to the QM-1. '

-92-

4) On the QM-1 side: !!COPYSN DESTFILE *EXT:S

Assemble Target Data on QM-1:
Press Master Clear, Start
2?22LDNOV

{USER 6

1EX /*TCOMP

B. Preparation of Data for Batch Run (do this step for each batch run)

1.

=) [2 B - VY | [8]
. o o

5.4.3.3 To

Run emulation on Vax with the following options turned on:

Turn on print option 41 to produce fault list for QM-1.

Turn on print option 44 to produce external input registers and
external input list for QM-1, if using external inputs.

Turn on print option 45 to produce external output registers for QM-
Turn on print option 46 if do not want emulation performed on Vax.
(i.e., if only purpose of run is to produce QM-1 outputs)

This produces a file *qmms.dat. This file contains the fault list
in QM-1 format, and the external inputs list, if option 44 was
turned on.

This produces a file *gmcs.dat which contains external inputs data
registers and address registers if option 44 was turned on, and/or
external outputs data registers and address registers if option 45
was turned on.

Use the Vax-to-QM-1 Transfer program to transfer *gmms.dat from the
Vax to the QM-1.

On the QM-1 side: !!{COPYSN DESTFILE *MS:S

Use the Vax-to-QM-1 Transfer program to transfer *gmcs.dat from the
Vax to the QM-1.

On the QM-1 side: !!COPYSN DESTFILE *CS:S

Assemble Batch Data on QM-1:

Press Master Clear, Start
2?22LDNOV

'USER 6

'EX /SETUP

Run Emulation on QM-1:
Press Master Clear, Start
?227?LD6,/R*

C

-93-

5.4.3.4 To Send QM-1 External Outputs to Vax
A. On QM-1 Side:
Press Master Clear, Start

??2?LDEASY
SET DATE AND TIME

Ei@ggectory,Search 1st=06,2nd=, 08
! | DEADSTART

! {EASY-SPACE,BS=26 , TPS=347777
{I<CR>

1 {EXEC BOTODISK

B. Use QM-1-to-Vax Transfer program to transfer QM-1 external output file
from QM-1 to Vax.

on QM-1 side:

! {EXEC QM1VAXI
OM~-1 TO Vax PIO TRANSFER FROM MEMORY
INTERMEDIATE PRINTOUTS? ENTER Y OR N

On Vax Side:

Stgqmlvaxi
(type in Vax output file name when requested)

2. Convert external outputs if desired. (see Section 5.4.2.5)
5.4.4 Vax <--> Qm1 File Transfers

5.4.4.1 Vax to Qm1 Transfers

Underlined characters are those which the user types into the Operating
System.

step 1: (QM-1 side)

Mount Application Pack on QM-1 Drive 0.
Disk should be write-enabled.

| Master Clear, Start
| ?77LDEASY
| { DATE , XX/XX/XX
1 {TIME, XX /XX /XX
(BY]
! IDIRECTORY, SEARCH 1ST=06,2ND=,08

-94-

1 !EX(ec) TVAXQM1
you will then see on the screen:
!ltest,entry=vaxqml, file=bbvaxqgml.
vax to qml file transfer

step 2: (Vax side)

$@[user.dem.transfers.vaxqgml Jtvqi FILENAME(where "FILENAME" is name of
the vax file to be transferred)

wWhen transfer completes:

On Vax side, file "translog.dat" contains the transmission log.
On QM-1 side, the new file is in DESTFILE.

optional step 3: (QM-1 side)

(do this step only if transferred file is to be used under Nova Operating
System)

! {COPYSN DESTFILE NOVAFILE

(where "NOVAFILE" is the name of the Nova file)

5.4.4.2 Qm1 to Vax Transfers

Underlined characters are those which the user types into the Operating
System,

step 1: (QM-1 side)

Mount Application Pack on QM-1 Drive 0.

Master Clear, Start
??2?2LDEASY
{IDATE , XX /XX /XX

TIME, XX/XX/XX

e
DIRECTORY, SEARCH 1ST=06,2ND=,08
1 1EX(ec) TQM1VAXI
you will then see on the screen:
!ltest,entry=mv, file=bbmv.
gml to vax file transfer

step 2: (Vax side)

se{user.dem.transfers.gmlvax]tqv FILENAME(where "FILENAME" is name of the
vVax file to be created)

-95-

When transfer completes:

On Vax side, the new file is in "filename"
On QM-1 side, file "translog" contains transmission log.

-96-

e —— e

6. Bibliography

6.1 References

1.

Baker, R., Mangum, S., Scheper, C., A Fault Injection Experiment Using the
AIRLAB Diagnostic Emulation Facility, NASA CR~%7§3§U, Research Triangle
Institute, Research Triangle, North Carolina, December, 1987.

Migneault, G. E., On The Diagnostic Emulation Technique And Its Use In The
AIRLAB, NASA TM-4027 (to be published 1988).

Nanodata Corporation, QM-1 Hardware Level Users Manual, Third Edition,
Revision 3, Buffalo, New York, July, 1983.

Nanodata Corporation, QM Micro, Version 1.3, Second Edition,
Williamsville, New York, 1976.

Nanodata Corporation, Multi Micromachine Description, Revision 2,
December, 1976.

Nanodata Corporation, QM-1 Nanoassembler Programmer‘s Reference Manual,
First Edition, February, 1980.

Nanodata Corporation, QM - NCS Operations Guide, Buffalo, New York,
October, 1981.

Naples, Charles, J., Emulation Aid System II (Easy II) System Programmer’s
Guide, Naval Surface Weapons Center, Dahlgren Laboratory Tbcﬁﬁica§ Report

NSWC TR 81-98, Dahlgren, Virginia, March 1981.

Naples, Charles, J., Simpl-Q Reference Manual, Naval Surface Weapons
Center, Dahlgren Laboratory Technical Report NSWC TR 81-262, Dahlgren,
Virginia, May, 1981.

-97-

Appendix A

Additional Figures

HEAD
OF
EVENT

Event, Free Space, and Action List Layouts

Control Store

Events and Free Space lists

<IIIII

’
’
[4
’

III>

’
’

LIST >>5>,>>,>>>

14

’
’
’
14
rerers

’
[4
’
’
’
rorre?
v
v
r
roa
v
'
¢
v
r o
v s
HEAD ' e
OF r
mm 14 rrrr
SPACE >>>,>>>>>>
LIST ’
ree?

L

Action List

creee?
o-—>
oo o null {—
U G
i) _L
<evnnn i
. “_>
<over
null
>
null
: i
> null
null

(not scheduled)

+» Pointer to next item in free space list
.. Pointer to next item in event list
——— Pointer to next action in action list

|

word 1
word 2

Word 3

Word 1
word 2

word 3

Event and Free Space Record Layouts

Control Store

Event Record Layout

17| 16| 15| 14) 13| 12| 11} 10 9{ 8| 7| 6| S| 4] 3| 2| 1

Time at which event is to occur

Pointer to next event in event list (null for last entry in list)

Pointer to first action in action list to be executed at this time

Free Space Record Layout

17| 16| 15 14} 13| 12| 11f 10| 9| 8] 7] 6| S| 4] 31 2| 1

Not Used

Pointer to next record in free space list (null for last entry)

Not Used

Action Control Block Layout

Control Store

171 16| 15| 14} 13| 12| 11| 10(9f 8] 7| 6| 5| 4| 3] 2

CONTROL BITS

Pointer to action corresponding to control bit 17

delta t for bit 17

Pointer to action corresponding to control bit 16

delta t for bit 17

Pointer to action corresponding to control bit 0

delta t for bit 0

—
CONTROL BITS

A A PAY
ﬁ—HOHnson :ownan L—HOnnson :ownn»—J

aNO0oNOX

nQNOoONOOM

Scheduling an Event
Insert New Event at Head of Event List
NEW EVENT

0Old Head of
Event List - ->

New Time NEW HEAD OF

<LK {<<<EVENT LIST

Insert New Event Between Two Events

HEAD OF
EVENT LIST >

DIXXII2>>>>

New Time

I
| <<<e<
| v

<- v
<<

Insert New Event at Tail of List

HEAD OF
EVENT LIST—>

. >»>> Pointer after scheduling
-——— Pointer before scheduling
<— ——— Pointer which has not been
— changed by scheduling

null

<{—

New Time

PI935

null

Scheduling an Action

Always Insert New Action at Head of Action List

Event Action Action
— | > > null
I
|
Event | New Action s
I -~
<~
bS5 D554 »>°
— |
Event
<_

>>>>> new pointer after scheduling
old pointer before scheduling, which has been replaced
—— pointer which has not been changed by scheduling

Flip-Flop Trigger Chart

(for downward edge-triggered flip-flop)

I NP UT S R E § U L T S
External Internal
pPC T L JK Qu+i Q. iQ,1 iQ,.,
11 - - (no change)
o0 - - - - 1 1
o1 - - - - 1 0
10 - - - - 0 1
11 2 - - (no change)
11 3 00 (no change)
11 3 0 1 0 1
11 3 10 1 0
11 3 11 Q Q
(or indeterminant
if R=1)
11 + 00 (no change) (no change)
11 + 01 (no change) 0 1
11 + 10 (no change) 1 0
11 + 1 1 | (nochange) ig 40,
(or indetermninant if Rel)
11 I - - |iQ iQ, (indeterminant if U=1 and
J or K changed while L=1;
no changes otherwise)
QQ Q external value at time n
Q.1 Q external value at time n+l
iQ Q internal value at time n
iQ ,;, Q internmal value at time n+l
t transition from 0 to 1
$ transition from 1 to 0

Fortran
Variable
Name
UIN

UINO

UIN1

UIN2

Fortran '
Variable
Name

UouT
UoUT1

UOUT2

vouT3
UoUTS
UouUT8

Logical
File
Name
FOR008

FOR007

FOR010

FORO11

Logical
File

FOR014
FOR012

FOR013

FOR019
FOR020
FOR021

FOR028

Fortran Initialization 1/0 Units

Inputs

Vax VMS
File Name

*net.dat

*comm.dat

*mems.dat

*iopts.dat

Outputs

vVax VMS
File Name

*jout.dat
*alph.dat

*nam.dat

*mat.dat
*check.dat
*save.dat

*extrn.dat

Description

the target network description(netlist)
in DENF format

the comments or descriptions to appear
alongsode device names when they
appear on the stack output

the initial values to be resident in
the host memory before the emulation
begins

the user runtime initialization parameters

Description

output text file from initialization
alphabetic list of devices:
device name, device number,
device type, device class,
initial output value
template for creating *comm.dat
device number, device number,
device name
entire matrix in format to go to QM-1
debugging information
all initialized data structures in
binary form
control store externals to go to QM-1

Fortran Emulation 1/0 Units

Inputs
Fortran Logical Vax VMS Description
Variable File File
Name Name Name
UIN2 FOR011 *eopts.dat user runtime options for emulation
UIN3 FOR015 *fault.dat fault list
UIN4 FOR016 (user name) external input lists
UIN6 FOR009 *save.dat all initialized data structures
(in binary) created
by initialization program .
Outputs
Fortran Logical Vax VMS Description
Variable File File
Name Name Name
vouT FOR014 *eout.dat text output file from emulation
UouTé FOR026 (user name) external outputs files

vout?7 FOR027 *qmms .dat

main store contents to go to QM-1
UouUT9 FOR029 *gmcs.dat

control store contents to go to QM-1

' s e

User Modifications to Fortran Module to Execute One Action

Cxkxkkkxxx*x Make changes where indicated by "++++ttttttttttttttriii+"

C$$$$$$ EXIACT EXECUTE ONE ACTION

Cc INPUTS :GPA - PTR TO ACTION TO BE EXECUTED
C OUTPUTS : EXECUTED ACTION
C IF INVALID ACTION CODE, PRINT ERROR & STOP

SUBROUTINE EX1ACT
IMPLICIT INTEGER (A-2Z)
INCLUDE ’'COMM20.FOR/list’
INCLUDE ’'COMM21.FOR/list’
INCLUDE ’'COMM22.FOR/list’
INCLUDE ’'EMUPARAM.FOR/list’
Coedededededdededdede dededede gk ok e d ok Aok 3k ok ok e e ok ok ke ok ok ok ok ok e ok o ok o e ok e ok ok ok o ok o ok
LOGICAL*1 CFALSE
DATA CFALSE/.FALSE./
DATA LMCODE/'774000'0/
Cc INCLUDE ’'GETCS.FOR/list’
INCLUDE 'CLEAR.FOR/list’

C EXECUTE ACTION

LACT=CS(GPA)
LACODE=(LACT .AND . LMCODE) /DIVACT {ACTION CODE RIGHT JUSTIFIED
Go 1o (10,20,30,40,50,60,70,80),LACODE {AIRLAB ACTIONS

IF((LACODE.GE.ILLACl) .AND. (LACODE.LE.ILLAC2))GO TO 500 !U.OF ILL.

CHttttttt++++
c *** Insert "IF" here checking for new action code and branch to newly
inserted call to user-written action*** , for example:

c IF (LACODE.EQ.NEWCODE)GO TO 600

BLJILI I B i o o I e e N

WRITE(UOUT,1000)gpa, LACT, LACODE
call termrn
STOP
C ACTION 1 - FILL BUFFER
10 CALL ACT1
GO TO 250
C ACTION 2 - WRITE MEMORY
20 CALL ACT2
GO TO 250
C ACTION 3 - READ MEMORY
30 CALL ACT3
GO TO 250
C ACTION 4 - DUMP NON-EMPTY BUFFER TO DISK
40 CALL ACT4
GO TO 250
C ACTION 5 — STOP RUN
50 CALL ACTS5
GO TO 250
C ACTION 6-EXECUTE OPERATIONS
60 CALL ACT6
GO TO 250 .
C ACTION 7-EXTERNAL INPUTS
70 CALL ACT7

User Modifications to Fortran Module to Execute One Action

GO TO 250
C ACTION 8-EXTERNAL OUTPUTS
80 CALL ACTS8(.FALSE.) INORMAL WRITE, NOT END OF RUN MARKER
GO TO 250
C ACTIONS FOR UNIV. OF ILLINOIS
500 CALL ACTILL(LACODE)
GO TO 250
o LA R AN A m e m o e AR SAS R REARE ARaay
Cx** Insert call to new module followed by GO TO 250 *** , for example:
c Also compile and link NEWSUB as described in ().

600 CALL NEWSUB
GO TO 250
O R o o L o o o o O o o

C DO RESCHEDULINGAd
250 IF((LACT.AND.CMASK(18)).EQ.0)THEN
CALL PUTCS(GPA,CLEAR(LACT,CMASK(10)))

ELSE
CALL REACT
ENDIF
300 RETURN
1000 FORMAT(’ INVALID ACTION - address= ’,06,’word 1= '/,
X 06,’ action code= ’,I10)
END

A-10

e e e e

‘
S AU T S

Fortran Parameters & Common Variables, Sorted by Common Label
Name Dimension Common

maxconn
maxgate

xname {4000)
prloc (3,2)
prsw (50)
prtime (30)
prtisw (10)
nconnec
nextern
ngates
runtitle(10)
title (10)
xaddres (4000)
xconn (10000)
xhdr (4000)
xhigh (4000)
xlink (10000)
xlow (4000)
zptr (10000)
xcount (4000)
xstack (4000)
datebuf
timebuf
dchigh (4000)
dclow (4000)
dcommen (10000)
csopact
cspflt

endbat

endrun

ftitle

infltr

memadr (30)
msfblk

msnxfl

ngfcon

nomems

nops

opsize (15)
pfltcon
timesiz
cseiac (21)
cseial

cseiar

cseidr

mseile

mseili

nexinp

cseocac (21)
cseoal

cseoar

cseodr (20)

Label

Description

parameter-max no. of internal connections allowed
parameter-max no. of gates allowed

cob
co8
co8
co8
co8
comml
comml
comml
comml
cormml
comml
comml
comml
comml
comml
comml
comml
commll
commll
comml 4
comml4
comml5
commlS
comml5
comml6
comml6
comml6
comml6
comml6é
commlé
commlé
commlé6
comml 6
comml6é
commlé
comml6
comml6é
comml6
comml6
comml?7
comml?7
comml?7
comml?7
comml?7
comml?
comml?
comml8
comml8
comml8
comml8

character*20-device names, set by getdevn

low & high address for cs,ms,ls for output

user print option switched, O=off, 1l=on

print window l=start,2=stop, 3=delta

l=print window flag(l=on)

no. of connections, set by preproc

no. of external connections, set by preproc

no. of devices, set by initrn=negn

title for run, read in getparm from eopts file
i*4-title for output,read from opts file by initrn
gml control store address for header for device i
full address for internal connection

header for each device i

index to connection list for last conn for device i
first word of internal connector record

index to connection list for first conn for device i
the index of the dest device for this connection
initial value of "count" for each device

stack flag for device(0=not on,l=is on 1lst stack)
character*9-current date for output
character*8-current time for output

high index for each device, into dcommen

low index for each device, into dcommen
character*l-one string holding all device comments
ptr to op action structure in cs(calc from read-in)
ptr to header in cs of faulter device(read in)

1*1 true if at end of batch(calc)

1*1 true if at end of run(calc)

fault list title,read by colist,used act6 & schnop
index no. of faulter device(read in)

memory relocation constants

ptr to ms fault blk(read in)

ptr to next op to be sched.,init by colist,inc in act6é
no. of gate faults this stack(calc)

no. of rom and ram memories with relocation

no. of ops in batch(calc)

no. of words for corresponding op

ptr to next fault connection(calc)

no. of qml wds to hold time(read in)

¢s addr of 1lst word of each ei action(read 1,calcrest)
last possible ei action entry(calculated)

loc in cs of first ei address register(read)

loc in cs of first ei data register(read)

last possible ei list entry(calculated)

loc in ms of first ei list(read)

actual number of ei sets for this batch(read)

cs addr of 1st word of each eo action(read 1,calcrest)
not used

loc in cs of first eo address register(read)

loc in cs of data register

A-1

Fortran Parameters & Common Variables, Sorted by Common Label
Name Dimension Common

Label
eofile (20) comml8
eonwrd (20) comml8
eorfl (20) comml8
eorstr (20) comml8
mseobu comml8
mseole comml8
nexoup comml8
dmask (0:17) comml9
csaddr comm2
csexter comm2
cstime comm2
msexter comm2
xehigh (4000) comm2
xei (4000) comm2
xelink (4000) comm2
xelow (4000) comm2
xew (4000) comm2
cmask (0:19) comm20
cstopa comm21
gnewt comm21
gnmcon comm21
gpa comm21
gpe comm21
gpevhd comm21
gpfrhd comm21
gpmcon comm21
gpmmas comm21
gpnewa comm21
gpnewe comm21
gsflag comm21
gstime comm21
gtime comm21
cs (0:20000) comm22
cssup comm22
ls (0:31) comm22
1ssup comm22
ms (0:70000) comm22
mssup comm22
pcslow comm22
pcsup comm22
plslow comm22
plsup comm22
pmslow comm22
pmsup comm22
ntrace comm24
xtrace (4000) comm24
nupcho comm25
upcsms (15) comm25
upform (15) comm25
uplocl (15) comm25
uploc2 (15) comm25
uptitle (15) comm25

Description

char*40-name for external output file(read)

no. gml wrds per datum in eo action-use getparm,termrn
byte-external output reschedule flag(l=on)

external output start time for rescheduling

loc in ms of first eo buffer

not used

no. of external output sets

mask for bit 0,0-1,0-2,...0-17

gml control store address for matrix

gml control store address for first external register
qml control store address for storing time for outputs
gnl main store address for first external register
index to last external data structure for each device
l=external complemented,O=not (not needed after init)
external link word

index to first external data structure for each device
qml cs or ms address of external

mask for bit 0,1,2...17,mask for bits 8&9,0(not used)
cs address of stop action

time for new event to be scheduled

number of action control records

general purpose pointer to action

general purpose pointer to event

ptr to head of event list, init by initfe

ptr to head of free space list, init by initfe
pointer to action control block

pointer to master action control register

pointer to new action

pointer to newly allocated event

stop flag(l=stop)

user—-defined stop time

current time

gml control store

highest cs loc to save on save file

gml local store

highest 1s loc to save on save file

gnl main store

highest ms loc to save on save file

parameter—-low dimension for control store (0)
parameter-high dimension for control store (20000)
parameter-low dimension for local store (0)
parameter-high dimension for local store (37)
parameter-low dimension for main store (0)
parameter-high dimension for main store (70000)

no. of devices to be traced

byte-trace flag(0=dont print output changes,l=do)

no. of user print choices(output formats)

user print choice memory type(O=cs,l=ms,2=ls)
character*80-user print choice format incl. ()

user print choice low mem address to output

user print choice high mem address to output
character*20-user print choice title to output

A-12

Fortran Parameters & Common Variables, Sorted by Common Label

Name Dimension Common
Label
zfullw (10000) comm26
nheads comm27
xheadt (500) commz27
nchange comm28
xchange (4000) comm28
xchid (1000) comm28
checkon comm29
swW (20) comm29
swl comm29
sw2-sw20 comm29
xebit (4000) comm3
xecsms (4000) comm3
xereg (4000) comm3
divear comm30
emask (1:18) comm3l
adfand commd
adfcn comm4
adfen comm4
asfan commd
nstack (2) comm4
[comm4
savg comm4
sbar commd
smax commd
smin comm4
stack (2,500) commd
ingnin comm5
initfl comm5
iprclr commb
ntri commS
triang (4000) comm5
xeval (4000) commb
xffval (4000) comm5
xhead (4000) comm5
xival (4000) comm5
xnudef (4000} commbS
xpval (4000) comm5
dconnt (10000) commé6
dinnum (10000) commé
dinval (10000) commb6
drflag (10000) commé
dxnext (10000) commé6
xclass (4000) comm8
xdis (4000) comm8
Xr (4000) comm8
xtype (4000) comm8
Xu (4000) comm8
xvalue (4000) comm8

¢c100o0
cl0o
clff
clgate

Description

byte

no. of devices to have headers printed

indexes of devices to have headers printed

no. of headers that changed this stack

byte- 0 if x didn’t change this stack, 1 if did
index nos. of the headers that changed this stack
equivalence(swl,sw(1l),checkon)

logical-true if prsw(3) and prsw(4) on(check hdrs)
logical-switches(not used)

bit no. for external (not needed after init)

type of external(O=cs,l=ms,2=1s)(not needed afterinit)
external register no. (cs,msls) (not needed afterinit)
divisor for emulator address reg. to right justify
masks for bits 17,17-16,17-15...17-0

real-denom,avg dyn fanout,calc in pstack,used
real-numerator,avg dyn fanout change,i.e., enequeued
real-numerator,avg dyn fanout examined

real-average static fanout, set by getdevn

number of items in stack i

current stack number (1 or 2)

real-average number of items on stack

non—current stack number (1 if s=2, 2 if s=1)

maximum number of items on stack

minimum number of items on stack

current & new stacks holding indices of stack devices
value to assign to output for devices with no inputs
initialization flag (0O=user,l=computer)

print-clear convention flag: 0(l=benign) 1(l=active)
number of devices with defined output values

indices of all devices with output value defined
external value for device

"PCTLJK" values for flip-flop

pts to 1lst entry in conn list(this device is destin.)
internal value for device

no. of undefined inputs for this device

predefined output value for device

connection type for internal connection

index no. of the source device for connectioni

value on input line coming into device

reversal flag for connection

ptr to next item in connection list w.same dest device
device class(gate,flip-flop,or tri-state)
disconnected output value for tri-states

R value

device type(fiip-flop,and,nand,or,etc.)

U value

output value for device

parameter~constant of 100(octal)
parameter—constant of 10(octal)
parameter-device class for ff (2)
parameter-device class for gate (1)

A-13

Fortran Parameters & Common Variables, Sorted by Common Label

Name Dimension Common Description
Label

clts parameter-device class for tri-state (3)

cngbit parameter-number of bits in gml word (18)

cnull parameter-(0)

connhi parameter-highest valud value for gate types(7)

connlo parameter~lowest valid value for gates types(1)

cpdval parameter-user output value for computer calculated(9)
csentl parameter-sentinel of -1 for action 8

ctyc parameter-connection type to flip-flop input ¢ (2)

ctyd parameter—connection type to flip-flop input 4 (7)

ctyen parameter-connection type to enable line of tri-state
ctygts parameter-connection type to regular gate (0)

ctyj parameter—-connection type to flip-flop input j (5)

ctyk parameter—connection type to flip-flop input k (6)

ctyl parameter—connection type to flip-flop input 1 (4)

ctyp parameter—connection type to flip-flop input p (1)

ctyt parameter-connection type to flip-flop input t (3)
divact parameter-divisor to righ-justify action code in action(2048)
dumtime parameter-dummy time to insert into stop action

eiasize parameter-max size in cs fo all ei actions(1000 o)
eilsize parameter-max size in ms for all ei lists

fbsize parameter-no. of gml words in ms fault buffer

illacl parameter-constant for U. of Ill. lowest action code(50)
illac2 parameter-constant for U. of Ill. highest action code(52)
illinl parameter-input unit for045-for U. of Illinois use only
illoutl parameter-output unit for040-for U. of Illinois use only
infin parameter-infinity(2147483647=max no. for i*4)

maxgfl parameter-max no. of gate faults per single time(30)
maxmem parameter-max. no. of target memories(30)

maxnei parameter-max no. ei sets (20)

maxupch parameter-maximum no. of user print choices (output formats)
mbit0 parameter-mask for rightmost bit 0 (1)

mnlbit parameter-mask for no. leftover bits in action

mnword parameter-mask f. #gml wds/targer wd in 1lst wd action(’340’0)
mull parameter—(17)

mul2 parameter-(1)

mulnbi parameter-divisor to right-justify mnlbit (1)

mulnwo parameter-divisor to right-justify mnword (32)

nthead parameter-max no. of devices which can have headers printed
numvops parameter-number of valid op codes(8)

opgtype parameter-gate fault op type(1l)

oplifg parameter-op code for lift gate fault(5)

oplifm parameter-op code for lift memory fault(7)

opmtype parameter-memory fault op type(2)

opsbat parameter-op code for stop batch(1)

opsrun parameter-op code for stop run(2)

opstg0 parameter-op code for stick gate at 0(3)

opstgl parameter-op code for stick gate at 1(4)

opstm parameter-op code for fault memory(6)

tema7l parameter-mask template for action 7, word 1(’034000'0)
tema8l parameter-template, action 8, word 1, no rescheduling
temb81 parameter-template, action 8, word 1, resched on

tyand parameter-device type for and gate (1)

A-14

Fortran Parameters & Common Variables, Sorted by Common Label
Name Dimension Common

tyff
tynand
tynor
tynot
tynxor
tyor
tyxor
uin
uin0
uinl
uinlo
uin2
uin3
uind
uinb
uiné
uin?
uin8
uin9
uout
uout0
uoutl
uoutl0
uout2
uout3
uout4
uoutb
uout6
uout?
uout8
uout9
vophigh
voplow

Label

parameter—device
parameter—-device
parameter—device
parameter—device
parameter-device
parameter—-device
parameter—device

Description

type
type
type

parameter-input unit
parameter-input unit
parameter~input unit
parameter—-input unit
parameter—-input unit
parameter—-input unit
parameter-input unit
parameter-input unit
parameter-input unit
parameter—-input unit
parameter—-input unit
parameter—input unit

parameter—-output
parameter—output
parameter—output
parameter-output
parameter—output
parameter-output
parameter—output
parameter-output
parameter-output
parameter-output
parameter—output
parameter-output

unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit
unit

for £f (0)

for nand gate (2)

for nor gate (4)

for not gate (5)

for nxor gate (7)

for or gate (3)

for xor gate (6)
for008-matrix(bdxhd2s.dat)
for007-device comments(bdxcomm.dat)
for010-target memories(bdxmems.dat)
for025-

for0ll-user options(bdxopts.dat)
for015-
for016~
for017-

for009-

for022-

for023-

for024-

for0l4-output file(bdxout.dat)
for018-

for0l12-alpha device list(bdsalph.dat)
for030-

for0l3-device name list{bdxnam.dat)
for019-matrix for gml(bdxmat.dat)
for020-binary checkingfile(bdxcheck.dat)
for021-

for026-

for027-

for028-

for029-

parameter-highest valid user op code(7)
parameter-lowest valid user op code(1)

A

- 15

Fortran Parameters & Common Variables, Sorted by Variable Name

Name Dimension

Common Description

adfand

adfcn

adfen

asfan

cl00o0

cl0o

checkon

clff

clgate

clts

cmask (0:19)
cngbit

cnull

connhi

connlo

cpdval

cs (0:20000)
csaddr

cseiac (21)
cseial

cseiar

cseidr

csentl

cseoac (21)
cseoal

cseoar

cseodr (20)
csexter
csopact
cspflt

cssup

cstime

cstopa

ctyc

ctyd

ctyen

ctygts

ctyj

ctyk

ctyl

ctyp

ctyt

datebuf
dchigh (4000)
dclow (4000)
dcommen (10000)
dconnt (10000)
dinnum (10000)
dinval (10000)
divact

divear

dmask (0:17)

Label

comm4 real-denom,avg dyn fanout,calc in pstack

commd real-numerator,avg dyn fanout change,i.e., enequeued
commd real-numerator,avg dyn fanout examined

comm4 real-average static fanout

parameter—-constant of 100(octal)

parameter—constant of 10(octal)

comm29 equivalence(swl,sw(1),checkon)

parameter—device class for ff (2)

parameter—-device class for gate (1)

parameter-device class for tri-state (3)

comm20 mask for bit 0,1,2...17,mask for bits 8&9,0(not used)
parameter-number of bits in gml word (18)

parameter—(0)

parameter-highest valud value for gate types(7)
parameter-lowest valid value for gates types(1)
parameter—user output value for computer calculated(9)
comm22 gml control store

comm2z gml control store address for matrix

comml7 c¢s addr of lst word of each ei action(read 1,calcrest)
commnl7 last possible ei action entry(calculated)

comml7 loc in cs of first ei address register(read)

comml7 loc in cs of first ei data register(read)
parameter-sentinel of -1 for action 8

comml8 cs addr of 1st word of each eo action(read 1,calcrest)
comml8 not used

comml8 loc in cs of first eo address register(read)

comml8 loc in cs of data register

comm2 gml control store address for first external register
comml6 ptr to op action structure in cs(calc from read-in)
comml6é ptr to header in cs of faulter device(read in)
comm22 highest cs loc to save on save file

comm2 qml control store address for storing time for outputs
comm2l cs address of stop action

parameter—connection type to flip-flop input c (2)
parameter—connection type to flip-flop input d (7)
parameter—connection type to enable line of tri-state
parameter—connection type to regular gate (0)
parameter-connection type to flip-flop input j (5)
parameter-connection type to flip-flop input k (6)
parameter—connection type to flip-flop input 1 (4)
parameter-connection type to flip-flop input p (1)
parameter—connection type to flip-flop input t (3)

comml4 character*9-current date for output

comml5 high index for each device, into dcommen

comml5 1low index for each device, into dcommen

comml5 character*l-one string holding all device comments
conmé connection type for internal connection

commé index no. of the source device for connectioni

comm6 value on input line coming into device
parameter—divisor to righ-justify action code in action(2048)
comm30 divisor for emulator address reg. to right justify
comml9 mask for bit 0,0-1,0-2,...0-17

A - 16

Fortran Parameters & Common Variables, Sorted by Variable Name

Name Dimension

Common Description

drflag (10000)
dumtime

dxnext (10000)
eiasize
eilsize

emask (1:18)
endbat

endrun

eofile (20)
eonwrd (20)
eorfl (20)
eorstr (20)
fbsize

ftitle

gnewt

gnmcon

gpa

gpe
gpevhd
gpfrhd
gpmcon
gpmmas
gpnewa
gpnewe
gsflag
gstime
gtime
illacl
illac2
illinl
illoutl
infin
infltr
ingnin
initfl
iprelr
1s (0:31)
lssup
maxconn
maxgate
maxgfl
maxmem
maxnei
maxupch
mbit0
memadr (30)
mnlbit
mnword
ms (0:70000)
mseile
mseili
mseobu

Label

commé reversal flag for connection
parameter—-dummy time to insert into stop action
comm6é ptr to next item in connection list w.same dest device
parameter-max size in cs fo all ei actions(1000 o)
parameter-max size in ms for all ei lists
comm3l masks for bits 17,17-16,17-15...17-0
comml6é 1*1 true if at end of batch(calc)
comml6 1*1 true if at end of run(calc)
comml8 char*40-name for external output file(read)
comml8 no. gml wrds per datum in eo action-use getparm,termrn
comml8 byte-external output reschedule flag(l=on:
comml8 external output start time for rescheduling
parameter-no. of gml words in ms fault buffer
comml6é fault list title,read by colist,used act6 & schnop
comm2l time for new event to be scheduled
comm2l number of action control records
comm2l general purpose pointer to action
comm2l general purpose pointer to event
comm2l ptr to head of event list, init by initfe
comm2l ptr to head of free space list, init by initfe
comm2l pointer to action control block
comm2l pointer to master action control register
comm2l pointer to new action
comm2l pointer to newly allocated event
comm2]l stop flag(l=stop)
comm2l user-defined stop time
comm2l current time
parameter-constant for U. of Ill. lowest action code(50)
parameter-constant for U. of Ill. highest action code(52)
parameter—input unit for045-for U. of Illinois use only
parameter-output unit for040-for U. of Illinois use only
parameter-infinity(2147483647=max no. for i*4)
commlé6 index no. of faulter device(read in)
comm5 value to assign to output for devices with no inputs
comm5 initialization flag (0O=user,l=computer)
comm5 print-clear convention flag: 0(l=benign) 1(l=active)
comm22 gml local store
comm22 highest 1s loc to save on save file

parameter-max no. of internal connections allowed

parameter-max no. of gates allowed
parameter-max no. of gate faults per single time(30)
parameter-max. no. of target memories(30)
parameter-max no. ei sets (20)
parameter-maximum no. of user print choices (output formats)
parameter-mask for rightmost bit 0 (1)
commlé memory relocation constants
parameter-mask for no. leftover bits in action
parameter-mask £. #gml wds/targer wd in lst wd action{’340’0)
comm22 gml main store
comml7 last possible ei list entry(calculated)
comml7 loc in ms of first ei list(read)
comml8 loc in ms of first eo buffer

A-17

Fortran Parameters & Common Variables, Sorted by Variable Name

Name Dimension Common Description

Label
mseole comml8 not used
msexter comm2 gml main store address for first external register
msfblk commlé ptr to ms fault blk(read in)
msnxfl commlé ptr to next op to be sched.,init by colist,inc in acté
mssup comm22 highest ms loc to save on save file
mull parameter-(17)
mul2 parameter—(1)
mulnbi parameter-divisor to right-justify mnlbit (1)
mulnwo parameter-divisor to right-justify mnword (32)
nchange comm28 no. of headers that changed this stack
nconnec comml no. of connections, set by preproc
nexinp comml?7 actual number of ei sets for this batch(read)
nexoup comml8 no. of external output sets
nextern comml no. of external connections, set by preproc
ngates comml no. of devices, set by initrn=negn
ngfcon commlé no. of gate faults this stack(calc)
nheads coomm27 no. of devices to have headers printed
nomems commlé no. of rom and ram memories with relocation
nops commlé no. of ops in batch(calc)
nstack (2) commd number of items in stack i
nthead parameter-max no. of devices which can have headers printed
ntrace comm24 no. of devices to be traced
ntri comm5 number of devices with defined output values
numvops parameter-number of valid op codes(8)
nupcho comm25 no. of user print choices(output formats)
opgtype parameter—gate fault op type(1)
oplifg parameter-op code for lift gate fault(5)
oplifm parameter—~op code for lift memory fault(7)
opmtype parameter-memory fault op type(2)
opsbat parameter—op code for stop batch(1)
opsize (15) commlé no. of words for corresponding op
opsrun parameter-op code for stop run(2)
opstg0 parameter-op code for stick gate at 0(3)
opstgl parameter-op code for stick gate at 1(4)
opstm parameter-op code for fault memory(6)
pcslow comm22 parameter-low dimension for control store (0)
pcsup comm22 parameter-high dimension for control store (20000)
pfltcon commlé ptr to next fault connection(calc)
plslow comm22 parameter-low dimension for local store (0)
plsup comm22 parameter-high dimension for local store (37)
pmslow comm22 parameter-low dimension for main store (0)
pmsup comm22 parameter-high dimension for main store (70000}
prloc (3,2) co8 low & high address for cs,ms,ls for output
prsw (50) co8 user print option switched, O=off, i=or
prtime (30) co8 print window l=start,2=stop,3=delta
prtisw (10) co8 l=print window flag(l=on)
runtitle(10) comml title for run, read in getparm from eopts file
S comm4 current stack number (1 or 2)
savg comm4 real-average number of items on stack
sbar commd non-current stack number (1 if s=2, 2 if s=1)
smax commd maximum number of items on stack
smin comm4 minimum number of items on stack

A - 18

Fortran Parameters & Common Variables, Sorted by Variable Name
Name Dimension Common Description

Label

stack (2,500) conm4 current & new stacks holding indices of stack devices

SwW (20)
swl
sw2-sw20
tema7l
tema8l
temb81
timebuf
timesiz
title (10)
triang (4000)
tyand
tyff
tynand
tynor
tynot
tynxor
tyor
tyxor
uin
uin0
uinl
uinlo
uin2
uin3
uindg
uinb
uiné
uin7
uin8
uin9
uout
uout0
uoutl
uoutl0

~ uout2
uout3
uout4
uoutb
uoutb
uout?
uouts
uout9
upcsms (15)
upform (15)
uplocl (15)
uploc2 (15)
uptitle (15)
vophigh
voplow
xaddres (4000)
xchange (4000)

commZ9

comm29 logical-true if prsw(3) and prsw(4) on(check hdrs)
comm29 logical-switches(not used)

parameter-mask template for action 7, word 1(’034000'0)
parameter-template, action 8, word 1, no rescheduling
parameter-template, action 8, word 1, resched on

comml4 character*8-current time for output

comml6é no. of gml wds to hold time(read in)

comml i*4-title for output,read from opts file by initrn
comm5 indices of all devices with output value defined
parameter—-device type for and gate (1)

parameter—device type for ff (0)

parameter—device type for nand gate (2)

parameter-device type for nor gate (4)

parameter~device type for not gate (5)

parameter—device type for nxor gate (7)

parameter—device type for or gate (3)

parameter—device type for xor gate (6)

parameter-input unit for008-matrix(bdxhd2s.dat)
parameter-input unit for007-device comments(bdxcomm.dat)
parameter—input unit for0l0-target memories(bdxmems.dat)
parameter-input unit for025-

parameter—input unit for0Oll-user options(bdxopts.dat;
parameter—input unit for015-

parameter-input unit for016-

parameter-input unit for017-

parameter-input unit for009-

parameter-input unit for(022-

parameter—-input unit for023-

parameter-input unit for(024-

parameter—output unit for0l4-output file(bdxout.dat)
parameter—output unit for018-

parameter—output unit for0l2-alpha device list(bdsalph.dat)
parameter—output unit for030-

parameter—output unit for0l3-device name list(bdxnam.dat)
parameter—output unit for019-matrix for gml(bdxmat.dat)

parameter-output unit for020-binary checkingfile(bdxcheck dat)

parameter—-output unit for021-

parameter-output unit for026-

parameter-output unit for027-

parameter-output unit for028-

parameter—output unit for029-

comm25 user print choice memory type(0O=cs,l=ms,2=ls)
comm25 character*80-user print choice format incl. ()
comm25 user print choice low mem address to output
comm25 user print choice high mem address to output
comm25 character*20-user print choice title to output
parameter-highest valid user op code(7)
parameter—lowest valid user op code(1l)

comml gml control store address for header for device i
comm28 byte- 0 if x didn’t change this stack, 1 if did

A-19

Fortran Parameters & Common Variables, Sorted by Variable Name
Name Dimension Common Description

xchid (1000) comm28 index nos. of the headers that changed this stack
xclass (4000) comm8 device class(gate,flip-flop,or tri-state)

xconn (10000) comml full address for internal connection

xcount (4000) commll initial value of "count" for each device

xdis (4000) comm8 disconnected output value for tri-states

xebit (4000) comm3 bit no. for external (not needed after init)

xecsms (4000) comm3 type of external(0O=cs,l=ms,2=ls)(not needed afterinit)
xehigh (4000) comm2 index to last external data structure for each device
xei (4000) comm2 1l=external complemented,O=not (not needed after init)
xelink (4000) comm2 external link word

xelow (4000) comm2 index to first external data structure for each device
xereg (4000) comm3 external register no. (cs,msls) (not needed afterinit)
xeval (4000) comm5 external value for device

xew (4000) comm2 gml cs or ms address of external

xffval (4000) comm5 "PCTLJK" values for flip-flop

xhdr (4000) comml header for each device i

xhead (4000) comm5 pts to 1lst entry in conn list(this device is destin.)
xheadt (500) comm27 indexes of devices to have headers printed

xhigh (4000) comml index to connection list for last conn for device i
xival (4000) comm5 internal value for device

xlink (10000) comml first word of internal connector record

xlow (4000) comml index to connection list for first conn for device i
xname (4000) cobé character*20-device names, set by getdevn

xnudef (4000) commS no. of undefined inputs for this device

xpval (4000) comm5 predefined output value for device

Xr (4000) comm8 R value

xstack (4000) commll stack flag for device(O=not on,l=is on 1lst stack)
xtrace (4000) comm24 byte-trace flag(0O=dont print output changes,l=do)
xtype (4000) comm8 device type(fiip-flop,and,nand,or,etc.)

Xu (4000) comm8 U value

xvalue (4000) comm8 output value for device

zfullw (10000) comm26 byte

zptr {10000) comml the index of the dest device for this connection

A - 20

Flip-Flop Decision Table for QM-1 Version

I N P U T S§ O U T P U T S
Input|® Value before Action | Branch to:
Complementing * Taken
P|C|T|L|J|K |V |VE |R|U|e|V,.s Vs |8, V |4, [Check!| skip?
Ap oo 0 o 1 x
0jo0 1 0y 1 x
1{0 0 1j 1 x
1j0 1 1{ 1 X
1)1 0 il 1 x
111 1 1] 1 x
AC 0jo 0 1] 1 X
0jo 1 1j 1 x
01 0 1] 1 x
0|1 1 1] 1 x
1{1 0 0] 1 x
11 1 0l 1 X
AT 1{1{1{ lof1 1 x
1]1j1) [1]0 0 x
111f1} [1]1 0 b3
1111y (11 0] 0 |1 X
1{1(1] |11 1] 1 |1 x
AL 11y 1 0 1j1 X
11} |1 1 0{1 x
11| (1 0f 0 0 o] 1 x
1) {1 1} 1 0 1] 1 x
11 |1 of 1 0 of 1 x
1) |1 1] 0 0 1 1 X
111 10}0|1 0 x
11 ol1jo 1 x
1]1| foj1]1 0 1 x
1{1| {of1{1 1 0 x
11| {o0f1|1 1 1 1 X
1|1| joj1{1 0 1 0 x
AJ or
8K or| 1|1 |1 1 0 X
(&3 &
AK)
ten- 110 0 X
able 041 0 X
0 1l 1 x
1 1] © x

Note: Any case not in table represents no action taken, and branch to "skip".
For input columns, blanks are "“don’t care" conditions.
! Check whether device should be enqueued, and continue processing.
2 skip enqueueing check, and just continue processing.

A-21

QM-1 Emulator Files

Sile gggrzting File File Description

ame ystem Type

Nanocode Emulator:

BBEMP1V1:S Nova Source Emulator Nanocode, Part 1
BBEMP1V1 Nova Binary "

BBBNBIN Nova Definition "

BBEMP2V1:S Nova Source Emulator Nanocode, Part 2
BBEMP2V1 Nova Binary "

BBEMP3V1:S Nova Source Emulator Nanocode, Part 3
BBEMP3V1 Nova Binary "

MSNANON: S Nova Source Main Store Extend. Address. Nanoword
BBNANOE: S Easy Source "

MSNANON:B Nova Binary "

MSNANON: M Nova Mapped "

Microcode Driver:

BBDSNOVA: S Nova Source Symbol Definitions

BBDSEASY:S Easy Source "

BBGDNOVA:S Nova Source Global Data Definitions

BBGDEASY:S Easy Source "

BBGD:B Nova Binary "

BBDRNOVA: S Nova Source Driver Module

BBDREASY:S Easy Source "

BBDR:B Nova Binary "

BBA1NOVA:S Nova Source Action Modules Set 1

BBA1EASY:S Easy Source "

BBAl:B Nova Binary "

BBA2EASY:S Easy Source "

BBA2:B Nova Binary "

BBESNOVA:S Nova Source Subroutine Modules Set 1

BBESEASY:S Easy Source "

BBES:B Nova Binary "

BBEMNOVA: S Nova Source Subroutine Modules Set 2

BBEMEASY:S Easy Source "

BBEM:B Nova Binary "

BBEENOVA:S Nova Source Subroutine Modules Set 3

BBEE:B Nova Binary "

BBUTNOVA:S Nova Source Utility Modules for Driver

BBUTEASY:S Easy Source "

BBUT:B Nova Binary "

BBIONOVA:S Nova Source 1/0 Modules for Driver

BBIQEASY:S Easy Source "

BBIO:B Nova Binary "

BBECOMPILE Nova Execute Assemble all Driver Microcode Programs

BBECONVERT Easy Execute Convert all Driver Source Microcode
Programs from Easy to Nova

BBCGD Nova Execute Assemble BBGDNOVA:S

BBCDR Nova Execute Assemble BBDRNOVA:S

BBCAl Nova Execute Assemble BBAINOVA:S

BBCA2 Nova Execute Assemble BBA2NOVA:S

BBCES Nova Execute Assemble BBESNOVA:S

BBCEM Nova Execute Assemble BBEMNOVA:S

BBCEE Nova . Execute Assemble BBEENOVA:S

BBCUT Nova Execute Assemble BBUINOVA:S

BBCIO Nova Execute Assemble BBIONOVA:S

A - 22

File

EQTODISK
TVAXQOM1

TQM1VAXI

*:E
R*
WXMDISK:S

WXMDISK:B

QM-1 Utility Files

Operating File
System Type
Easy Execute
Easy Execute
Easy Execute
Nova Execute
Nova Loadable
Easy Source
Easy Binary

File Description

Write External Outputs from
Memory to Disk

Transfer Disk File from Vax
to QM1

Test VAXQM1 BBVAXQM1
Transfer Disk File from QM1
to Vax
Test MV BBMV
Generate Executable File
for Target Machine *
Executable file for Target
Machine *
Write External Outputs from
Memory to Disk
L]

A - 23

File

BBGETPIO

BBPUTPIO
BBRACKNAK
BBCACKNAK
BBVAXIN
BBREST

BBVAXOUT

BBSACKNAK

BBIVAXIN

BBACWRTRAN
BBRDATAF
BBEXITARUN
BBIVAXOUT

BBACCOMPAR
BBIPUTPIO

BBIGETPIO
BBRINTF

BBMVMAIN:S
BBMV
BBMVSEND: S
TQM1VAXI

BBPVAXQM1
BBVAXQM1
BBWRDATAF
BBWRTRANF
BBEXITRUN
TVAXQM1

QM-1 Files for Transfers With Vax

Operating File
System Type

File Description

vax to QM1 and QM1 to Vax

Easy

Easy
Easy
Easy
Easy
Easy

Easy

Easy

Easy

Easy
Easy
Easy
Easy

Easy
Easy

Easy
Easy

Easy
Easy
Easy
Easy

Easy
Easy
Easy
Easy
Easy
Easy

Source

Source
Source
Source
Source
Source

Source

Source

QM1 to Vax

Source

Source
Source
Source
Source

Source
Source

Source
Source
Source
Executable

Source
Execute

Vax to QM1

Source
Executable
Source
Source
Source
Execute

Get next record from pio interface
i.e., wait till ready, and

determine no. of records read

Put next record out over pio interface
Receive acknowledge/no ack. code
Calculate whether ack or nak code recvd
Get next record from pio(lowest level)
Miscellaneous low-level modules for
interface

Put next record to pio(lowest level)
from a character array

Send ack/nak code over pio

Get next record from pio(lowest level)
(as an integer array)
Write activity on transaction log file
Read next record from QM1 disk file
Close disk files and exit the run
Put next record to pio(lowest level)
from an integer array
Compare record sent to record received
Put next record out over pio, from
an integer array
Get next record from pio interface
(as an integer array)
Read next integer value from QM1
disk file
Main Program
Main Program
Send record from QM1 to Vax
Transfer disk file from QM1 to Vax

Main Program

Main Program

Write record received to QM1 disk file
Write activity on transaction log file
Close disk files and exit the run
Transfer disk file from vax to QmMl

A-24

2V | 2% | 3 | W || a Wl e | Al o] A a
9 L 8 6 OT | 1T | 2t | €1 | vy | st | o1t/ i1
2w, 3 v | o a | o A oA oy A
9 L 8 6 0T | Tt} et | €| vv | st | o1 | L1

sinoAe 1opesH 89ire(g

dota—drias

ajeys-113,
10 ajen

s(oe3s
3s1T3 uOo 30U

ST 90TASP STUY3I=T
¥oe3s 3Is1t3

UO ST 3DTASP STYI=(

anTeA TeraTul

810U 10 3UO OJUT SPI3I
801A9p STY3 Jo Indano ay3=T
s193stbax teuiralxs
Aue ojutr peaz jou Saop
8014A9p STYY 3O Indano ay=Q

psnanbua usaq j0u Seys=]
penanbus usaq Sey=(

¥oe3s o o burssadoiad s1yl
uo passedAq aq ued aoTAdIp
STY3 Sny3 !{samrt) JO ISquMuU
uaa? ue psbueyo sey anyes=y

saury 3o

Jaqunu ppo ue pabueyo sey anyea=()

pattel=1

paTTe3 j0u=Q

ybTy }O0TO oTTUYM

sbueyo jou ptp dor3-dT73 03 Indut=T
yb1y o0Td aTTYM

pabueyd do13-dr13 03 Indut=(

patqeus = T ‘pPaTqestp

0

T ‘m01

L]
o

T ‘401 =0

T ‘40T =90

T ‘80T =0

Burpod

—_———— RSN SO R

Hera suorlosuuo) TeuIdIXI

spotiad swry 039 ‘yap ‘puz Huranp

39s st pue spotriad awry 539 ‘pig ‘3asy buranp
psutwrexa ST belJ sTylL -yoels uo pananbua

us3q sey 201Adp J1ayjaym sajedTpur - beid yoeas
*spotiad awtl 939 Y39 ‘Y3Ip ‘puz butinp 38s pue
spotraad awry ‘539 ‘y3g ‘pag ‘isT burinp pautwexa
sT beT3 styL -poriad awry snotaaad buranp

SaWT} JO Iaqunu ppo 310 Uaad ue pabueyd sey welt

)oe3s JO anyeA Teuiajixa 13yjaym 93edTput 03
w3 tiobre Aq ATTeuzajur pesn - berd ssedig yoels

(93ep 03 pajuswaTdwr j0u) berd sanyred

(mpytaobre Aq ArTeuaajur pasn)
sdo13-drTd 103 sSnje3s JueuTUISl3pul Tetrods

bera perqesta/parqeud

(yoe3s o
butsseocoid aytym ATuo pajepdn) anyea Teuialixz

(yoe3s aeqd
putrssacoad aTTym ATuo pejepdn) snfeA TeuiIaIxXy

snTeA Teulayxy

anTeA Teulajul

votadtiosad

SpiOM JopesH 104 spuaba

A - 26

dot3-dr13

ybty = 1 ‘mo1 = ayy 03 Indur ¥ Sy uo anTea jUSIIND SYL
dor3-dr13

ybty = T ‘M07 = ¢ ay3 03 Indur £ Sy3 UO SnTeA JUIIND I,
. dor3-dryz

ybty = 1 ‘mo1 = ¢ ayy 03 andur 7 Sy3 uo anTea JUSIIND JYL
dorz-dr3

ybty = 1 ‘m07 = o ayy 03 Indur 5 Sy3y uo anTeA JUSIIND JYL
dor3-dr13

ybty = 1 ‘mo7 = ¢ ayy 03 Indur D Sy} UO INTeA JUIIIND JYL
dorz-dr13

ybty = T ‘M0T = 8yl 03 Indur g oYy UO SnTeA JUSIIND JYL

T°€°p°p UOTIOaS 338
_ *sabueyo o3eb e jo anyea Indino ayy usym
vamusmﬂmomm :oﬁuuuocucmamamaaom~m mcﬂEuwumuouvmmsmwnuﬂssucsoouwnlxwmc

"spotiad swry 2939 ‘pig ‘3sT butanp

39s pue sporiad swrl ‘°032 ‘yap ‘pug Buranp

pananbus usaq J0u Sey=T pauTwexa ST 6erJ SIYL °3joe3s uo pansnbus usaq

T penanbua uaaq sey=(Q Apeaite sey ao1ASp 19y3aym sejeoTpur - berd joeas

"spotaad awty ‘038 ‘y3g ‘pag ‘3Isy Butanp 3es pue
) sporiad awry ‘938 ‘Y39 ‘y3y ‘puz Burinp pautwexs
ummaﬂuMOumnsbc mﬁmmaumﬂza.uoﬂuwmmsﬁuwzoﬂ>mummcwu=n

UsA3 ue pabueyo sey antea=t SSWT} JO 1aquUNU Ppo IO UdAS Ue pabueyo sey wo3lt
sauty 3o 3OS JO SnTeA TeuIalxd Iay3zaym a3edTpur 03
T Jaqunu ppo ue pabueys sey snyea=(Q wmytiobte Aq Arreuzsjur pesn - berd ssedAg joeis

si193s1bai Teulalxs

anTeA TeraTul Butpod worydrIosag

SPIOM J19peaH 10} spuaban

A-27

J

N p—

< 3 - | a a v 1 1 n 4
I=Ss 3 T (1 =u SIdp eadig UoTrT3289UUOD

0 T (4 £ L 8 6 01 1T 41 €1 124 61 91 LT
< | - § a a v 1 1 1] d
I=Ss 3 T |1T=u n q adi1 UuorT3d2oauvuuo)

0 1 [4 € L 8 6 01 11 (4! £T A ST 91 L1
< d - | a a A 4 1 1 n d
IT=S 3 T]0 = U< o‘ 3 S n L 0 N

0 T 4 £ L 8 6 01 11 a1 €1 4! ST 91 LT
0=s| 3 T < a W I O ¥ 1 4 s I a

T 4 £ L 8 6 0T 11 A | £T 1A ST 91 LT

SInoAe-] 10}09UU0Y) [eUIS}U|

sTqeu
aje3s-11

lonbe - iiog]

dota-dria

JOJIJUIOD

T &dAL
‘ajen 03

1 2dig
‘ajen 03

0

-2

« «OTqeUs aje3s-113
10 do13-dr13

O3UT UOT3IO3UUCD 103
(z 8dk3) ,andut
93e3s-113 10 ajeb
OjUT UOTIO8UUOD 103

S13Yy30 TTe 103
1 adiy

10309uu0d 3jed 103

onTeA
TeraTur

do13~dr13 03jur UOTIO8UUOD g = ®yzZQ
83e3s-113 JO SUTT 3[qeus = °TpQ

. .9Tqeus aje3s-113 10
do13-dr13 e OjUT UOTIOBUUOD = T
(g 8dA3) ,andur ajeys-113
10 @3eb ® 0jUT UOTIOBUUOD = ()
(1 adA3) ,andut a3e3s-113 10
a3eb e OjUT UOTIOBUUOD 103 paSN J0u

(#MO0TTOF Jstur paom

TeuoT3ITppR UR)3DTASDP UOTIRUTISIP
3O Ssaippe 31G-8T7 TIJ = |

80INOS WO1J
uoTIRUTIS3P JO JuawadeTdsIp = (

8DTASP 32INOS STY} WOi1J

8D0TASD UOTJBUTIISSP B 03 UOTIOSUUOD

TeuIsjuT 3ISeY ay3 ST STYI = |
S01ASp 80INOS STY3 wWoiJ

S80TASP UOTJRUTISIP B 03 UOTIOSUUOD

Teurajut 3sef ayy Jou ST ST = @

9D0TA3p UOTIRUTISOP

ayy ojur Hurob pajisaut jou ST
UOTIOBUUCD STY3 UO anfeA ayy = |

8D2TASP UOTIRUTISIP

Yy ojutr burob pajisaur st
UOTIOBUUOD STYJ U0 anyTea ayy = (

(uotyejou jJuawstdwod s,z ur)
vil + X — 2 = Juswedoerdsiq uayg
‘pIom
Japeay uoTleullSap JO SSaippe=2z 337
PIoM 13pe3dY 82INOS JO SSaIppe=X 397

Butpoy

80TASp UCTIBUTISSP 9y} OIUT UOTIOSUUOD
a3 3o uotiydiiosep o1jroads

S01ASp UOTIEUTISIP JO pIoM 13peay Jo
sso1ppe 2103s TOIUCD aInTosqe ITG-8T TTNd

9D1ASp UOTIRUTISAP 8y} O3UT
uoT3Oo8uUuod ay3 jo uoridiiosep Teisudn

ssaippe
uoTjeurissSp jJo uotrjejussaidaz Jo adAy

SUOTIOBUUOD TRUISIUT 103 TOUTIUSS

betr3 uotsisaur

8DTASp 80INOS WO13
801A9p UOTIRUTISAP jJOo Juamaderdsig

uorydTadsaq

$10}08UU0 jeussluj J0j spuaber

adAL

UOT3O3UUO)

Ssaappw 1T

e

Juswaoetdstq

JWeN

- 29

andur £ ay3 jo juswardwoo ayy sT Indutr ¥ Sy} 9iaym auo st Indur @
PaTqesTIp 10 pafqeud ST 3T JaYy3ays STOIJUOD YOTym ajels-113 e ojur burob sury a8yl ST arqeus ajels-113
aurT oTqeus ayy 3dsoxs aje3s-113 e 03 aury Indur Aue st Indur sjeys-11y

LR
L

»

1 Je uTews1 TTIM anTea
IndIno s3T ‘paTqestp ST S0TASP USUM = T
0 Je uTews1 TTIM anyea
Ind3no S3T ‘POTqeSTP ST 9JTASD USUM = (entes IndIno psrqesta SIap

sased 1ay3o IV = 0
*3and3no
jueuTWIa}aPUT U sasned ybry aie) pue
‘d ‘1 aTTym butbueys y 10/pue [pue
UOTIOSUUOD @ 10 Y 10 L © ST STYL = [¢ beld jueutmiajapur n

sased 190 IV = 0
Indjno jueuTWIS}SPUT U Sasned
ybry axe ¥ pue r arTym ybty Hutob
S,)YD0TO pUR UOTIOSUUOD 7T Ue ST STYY (q
10 ‘Indjno jueUTWIS}SPUT Sasned
ybtry aie ¥ pue p a7TyYM moT butob
S,3D0TD puUe UOTID3UUOD J © ST STY} (®e
PTI = 1 1 berd jueutuzajspul g

*yoea

S31q @31y} a1e S3TBIP 1R300 PITYY
pue puodas ayj ‘3Tq auo ST IT6TP

1e300 3SaTI a8yl ‘Ssed yoea ur :ajou

do3-dr13 ojut uoTIdBUUOD ,,,(¥30)A = °TZT
doT3—d113 O3juT UOT3IORUUOD ¥ = °T9T
do13-dT13 O3juT UOTIOBWUOD f = TPt
do1z-drr3 ojuT uoT3OoBUWUOD T = PgTT
do13-d113 O3juT UOTIOBWUOD I = °19Q
do13-d113 o3jur UOTIOBWUOD D = *ggp
SnTeA
Teryrul Butpoy uvotdriosaq SaeN

$10}93Uu0) jeusdiu| o} spusban

< S § 3 ¥ 4da a v T T 0 4 >
uotrT3jrsod 3Itd 113w| adAL| 3 T 1=

ov | —wou betyy
0 1 4 £ 1/ S 9 L 8 6 0T | 1T | 2t | €T | ¥®»1 | st | 9t | LI
uor3irTsod 3Itr4 1squnN 193stboy 3 T |o=

‘ betyy
0 1 (4 £ v S 9 L 8 6 0T | IT | 2T | €T | %1 | st] 9t | LI

SinoAe J0}90UU0Y) |RUISIXT]

aaysibayg
9103S uTtey
10 31038

T013U0) 03

30303Uu0)) -

Teuaxy

(pejuswatdut
jou)
1aystbay
a103s

Teoo1 03
10303UU0)
Tewza3xa

A-31

*193s1baa1 T1o13U0D

uotrjoe ue ST 133sTba1 TRUIAIXD STY} =
193s1ba1 1013uU0O uoTIOE

ue jou ST 193Stbai Teuislxd ST =

2103 urew
2103S TOI3UOD

O O©

*LT 03 (0 19pI0 ay3 uT JuedTITUBTS 3Isow O3
JuedTITUbTS 3SeaT WOl paiaqumu a1t SITq SYL

‘T paiaqunu ST
193s1ha1 3S11J 8y} a1aym ‘2103S uTeW 10
8103S TOI3jUOD JO HOOTq Y3 ur 133s1haa
3ISITJ aY3 03 aATIeTal Jaqunu 133STha1 ayg

9DTASp 22INOS STYY} WO1J UOTIOBUUOD
TeuIalxa 3ser ay3l ST ST = T

20TASp 90INOS STY3 WOIJ UOTIOSUUOD
Teura3xa 3sef ay3l 30U ST STy} =

90T1ASP UOTIRUTISSP

ay3 ojut burob pejasaur j0u ST
UOTIOSUUOD STY} UO anfea 3y} = T

901ASD UOTILUTISIP

ayy ojut burob pajasaur st
UOT}OSUUOD STYJ UO anfeA ayy =

‘piom Azowsuw
2103s uTeW 10 3103 Toaju0D Twb e Aq-
pojuasaadaz st 193s1ba1 Teuiralxs ayy = T

193s1b81 8103s Teoor Twb e Aq
pajuasaadai st 19351681 Teulayxs ayy = (

Burpoo

193s1bax Teuialxa Jo
ssaippe Twb ajntosqe 31G-81 TTNd

fperd 13351b8y T0O13UO) UOTIOV

133sT1ba1 Teuiajxa 103 Azowawm jo adLj

Spaaj UOT3IO8UUOD 3Yy3 YOoTyMm O3uT
19351621 Teulalxa 9yl JO Jaqunu 3yl

SpaaJ UOTIOAUUOD 3Y3} UYOTym OuT

19351621 TeulIalxXa 3yl JO Iaqunu Yyl

SUOT3IOSUUOD TRUIdIXd 10J TaUTIUSS

be1d uorsasaul

perd 1e93stbay Teuzayxd
wvotydr1dsaq

$10}08UU0) |eusdlx] 10} spuaba

SS2IpPNV TTNd

T3 OV

adA1—wsu

UoT3TSOd 31

Jaqumy
193s1bay

A - 32

K10

— L

:

379 TOI3UC) UOTIOV 193ISeW

uoT3IOoV A10WS| Swos

uotlov Aiowsy swog

uoT3oV Azowsw swos

13381634 T0IjU0D UOTIOV 13SeR

SsL1I1Ig TOYLNOD

0 319 103 3 e3Tap

0 31q Toajuod 03 Hurpuodsaiiod uUOTIOR O3 193UTO4

ST 31q Toa3uod 03 Hurpuodsaizod uorjoe 03 13jutod

LT 31q 103 3 e3T3p -

9T 3Tq TO013U0D 03 burpuodsaiioo uotjoe 03 1ajurog

LT 319 10F 3 e3Tap

LT 319 T013u0d 03 burpuodsaiiod uorioe 03 133UTO4

SL1Ig TO¥YLNOD

2103§ JOI3U0D
SUOTIN

¢ e v IS |9 |L 8 |6 |OT [TT |ZT |€T {¥T

mqmoa

LT

9103S TOI3UOD
¥90Td T0I3U0D UOTIOV

noke seamonng ejeq Ariowop

A-33

0 T [4
a3 sn I 0N > 31q 31q 31q .
j8biey | 3ebaey | 3sbiey
61-u 81-u
. e e e e e . 119 119
jabiey | 38b1en
LT-U 91-u ST-u T-u u
1q 31q 31q 31q 31q
jabiey | 3sbaey| 1qebie; obiey | 39biey
_ 0 T (4 9T LT
| 0 1 z
m 31q 31q 31q : * ot s st *
. 38biey [3sbiey | 3sbien
p-u ¢-u
L] - [] L] L] - . L] » L] . - “ﬂn UMQ
38biey | 38baen
* Z-u 1-u u
319 31q 31q | < a S n e >
I qa8biey | 39biey| 2qaebae;
0 T A 9T LT

(S31q u Y3 1M paom 33biey Jo T-WD ur noker Xiowom 103 Suorido omy)

ynoke] ALiows iy pajejnwz

patTImISNe 31391

A - 34

pat3masne ybty

patgTasnl 3387 ST piom 3abiey JT ‘piom 3Isef UT pasn s3Tq JO laqunu

parytasnl ybra ST paom 3abiey 31 ‘/(Tewrdap)gr

piom 3abiey suo juasaidaa 03 papsau spiom 3IG-gT Tub JO 19quUINN

(potaad 3 A1sAe anpayosai=QT {30U0 ITNPaYISaI=T() ‘{HurTnpayosai ou=(())
(POTNPaYOS=T {pPSTNPayds Jou=(Q)

: beiad snpayosay
SUYOIIMS pPITNPaYOs

19sn Aq paurgep asn

burnpsyosay 103 JUSWSIOUI JWTL

SWT) STY} J© paIndaxa ag 03 UOTIOR 3IXau 03 193jutod

> 1< >|< . 2> <

2 g A 4 @ p o0 O

u o T 3 o0V

13 14 S 9 L 8 6 0T 11 At €1

VT

ST

91

LT

INOAET UO}IY |BIBUSY)

<cmoOA

U pIom

€ paom

¢ baom

T pIom

A - 35

patztasnl 3387 ST piom 3abiey JT ‘piom 3sef ur pasn S31q JO iaqumu

par3Tasnl 3uybti sT paom 38biey 3T ‘i "ewrdsp)gl

piom 33b1e3 suo juasaidai 03 papsau spiom 3TG-8T7 Twb Jo 1aqumN

(potaad 3 K1aaa anpaydsai=QT] {adu0 aNpPaydsai=y(‘{burinpayossai ou=(()
{poTNpayds jou=Q)

(PaTNpayos=1

: berd atnpayodsay
1Yo s paTnpayos

Kiowmaw jabiey jo piom 3sey JO ssaippe pPITeA

Kiowsw 39b1e3 JO piom piom 31T JO SSaiIppe PITeA

19351631 ejep pajemwe JO SSaippe 8103S T0IJU0) T-WD 9INTOSqY

19351621 ssaippe pejermie JO SsaIppe 9103S T0I3U0) T-WO IINTOSAY

(3ue3suoo uorjecorar ‘-9°1) Azowsw 3abie;l Jo piom 3sIT3 JO SSaippe 9103S UTEN T-WO IINTOSqY

ButTnpayossy 103 JUSWSIOUI SWTL

SWT} STYY J© Pajndaxa aq 03 UOTIOe 3IXau 03 Iajurod

> < > < - > 1<
a o} g Y

>

0

T

0
apod

U0 T30V

T < € 14 S 9 L 8 6 0T

11

(45

€T

| A

ST

91

L1

(2 = 9p092) uonoy Alowap alMm

CMmOUNO

8 PIOM
L pIoM
9 paoMm
S pIoM
7 pPIoM
¢ PIoM

¢ bIioM

T pIoM

A - 36

pot3tasnl 3397 ST paom 3abiey JT ‘piom 3ISeT UT pPasn S3Iq JO IaCunu

paryrasnl quybta st piom 3sbie; 3JT ‘(TewTOaP)ET

piom 33biey auo juasaidai 03 papasu Spiom J1g-gT TwbD JO IaCquUNN
: betd snpayosay

(potaad 3 AxaAs anpoyosai=QT {35U0 ATNPaYISaI=T(‘HUTTNPaYISs1 Ou=(Q)
{paTnpayos jou=(Q)

(PoTNpayos=T
**039 ‘T piom Jo 9T 3Tq 03 Spuodsa1100 (T PIOM T PIoM JO LT 31q O3 Spuodsaiiod g pioM :330N

1YOIIMG PITNPIYDS

spaa3 31q A1owawm butpuodsaiiod 3yl YOTym OJUT 3DTASP JO 13TITIUSPI 30TASQ

Kiomow 3abaey Jo piom 3sey Jo ssaippe vﬂg

Kiowaw 38b1e3 JO pIom 3ISITJ JO SSaIppe PITeA

19351691 ejep pajerwe JO SSaippe 3103S TOIJUOD T-W) 23INTOSqY

193s1he1 sseappe psjerma Jo SSaippe 21035 TOIu0) T-WD 9INTOSqQY

(Juelsuod uotiedcoTax ‘*9°1) Azowmow 3abiey Jo piom 3ISITI JO SSaIppe 9103S UTEH [-WD SINTOSAY

burTnpayosay 103 JUSWSIOUI JWIL

W) STY} Je pajnoaxa aq 03 UOTIOe IX3U 03 193UTOd

> | < > < - >|<
a o} g v

>

T

T

0
apod

0

0

0

UO T33OV

T [4 13 v S 9 L 8 6 01

1T

T

ET

| A}

ST

91

L1

(€ =epo02) uonoy Kiowe pesy

LR RSN~

9Z-6
SpIoM

8 paom
L paoM
9 paom
S paom
v paom
¢ pPIoM

¢ baom

T paom

~

A-3

patytasnl 3397 ST piom 38bie] JT ‘piom 3ISel uT pasn SITq JO JaqUNU
por3TIsnf Juybra ST piom 3abiey 3T ‘(Tewrosp)gl
paom 33bie3 suo jussaidai o3 pspesu spiom 3T1q-8T Twb JO Iaqumn

(potaad 3 A1ane anpayosai=Q] {20uo0 aInpaydsai=T(Q {burTnpayosaa ou=(QQ)
!paTnpayos 30u=Q)

(PSTNpPayds=T

: beyd saTnpayosay
‘Yo IMS paTNpayos

butInpeyossy 103 JusWLIOUI SWTL

SWT) STY3 Je pajnoaxa ag 03 UOTIOr IXaU 03 193UTod

< > < > 1< > < > T 0 1 0 0 0 0
a o) d Y 2 poOD UOT3J30V
0 T (4 € v S 9 L 8 6 0T 11 T €T VT 18 o1 LT

(s=9pod) uonoy doig

CmoOAN

¢ pIoM

¢ paom

T PIoM

A - 38

potirasnl 3397 ST piom 33biey JT ‘piom 3ISeT UT PISN SITY JO IaqumMuU

pargrasnf 3jybti s1 paom Jabiey 3T ‘(Tewrosp)gr

piom 3abie3 auo juasaidai o3 pepesu Spiom JTG-gT Twb Jo 1aqumN

(potaad 3 A1sas oTnpayosai=Q] {90U0 ITNPIYDSaI=T(‘HUTTnpsyossl ou=QQ) : berd sTnpsyosay

(POTNPOYDS=T {panpayds j0U=() :YOITMS PITNPIYDS

CMOUNO

*UOTIOR aY3 JO piom
3se] 9yl ST £ piom usyy ‘setiowsw 3abiej ou aie aiayy JI Atowow Jabiey yoes 103 paamnbai ST piom aup
T9AST TeuoT3ioun3y ayy Je pejerrme Hbuteq SeTioWSW JO JaqUNU 3YY = W ,

W Aiowsw 103 uotioe 331am 10 peal Aue JO ssaippe 81035 TOIJUOCD .:vwom
¢ Aaowsm 103 uotjoe 893Tim 10 peas Aue JO SSaippe 2103S TOIJUO) S paom
T Azowswm 103 uoT3OR 23TiMm 10 peal Aue JO SSaippe 2103S TOIJUO)H v pIoM
burnpsyosay 103 JUSWSIOUT SMTL € pIioM
SWT) STYJ Je pondaxa ag 03 UOTIOR IX3U O3 193UTOd Z PaoM
>|< >1< . >[<—>] 0 T T 0 0 0 0
a o} :| \ 4 8apoDdD uorTj3jov 1 pioM
T 4 3 14 S 9 L 8 6 01 11 (4 1 A ST 91 L1

(9 = apod) uonoy suonesredo

A - 39

pa13Tasnl 3397 ST piom 39biel JT piom 3Iser ur pesn s3Tq JO Tequmu
patyTisnl Jybta st piom 3sbiey 31 ‘{ Tewtoap) 8T
paom jabirey suo jusseadai o3 pepsau spiom 31g-g7 Twb Jo iaqunN
(potaad 3 A18A5 aTnpayosai=QT {803U0 SNPaYISII=T(!butTnpeyosai ou=p0) :bers sTnpayosay
(POTNPaYDS=T :paTNPayods J0U=() :YOJIMS PaTNpayos
39S Indur TeU1dIXd STY] UT SITq JO IToqumu

Spesy Indur Teurajxa JO 3Tq JUBDTITUBTS ISEST YOTUYM OJUT 80TA9pD JO SSaippe

SP397 31q IX3U YOTyM OJUT 8DTASD JO SSIIppe

Spes3 Indur Teursixd JO 3ITq JUEDTITUDTS ISOW YOTYM OJUT 8D1A3p JO Ssaippe

PaTNpayds aq 03 Indur Teuisyxa 3Sel JO SSaIppe 21035 UTEW

PaINpayds aq 03 Indur TeUISIXD IXBU JO SSIIPPe 9103S UTEW

T - (39S ST} JO7 swe3t 3sTT Indur Teuzelxe Jo zaqunu Telor)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

133s1ba1 eIEP JO SSaippe 8103s TOIjUOH

193s1ba1 ssaippe Jo ssaippe 2103S TOI3U0)

ISTT Indut Teurax@ JO piOM ISITI JO SSAIppe 21035 UTER

butnpsyossy 103 jusweiour swrg

SWT3 STYI Je pajndaxa aq O3 UOTIOR 3IX8U 03 193UTOd

> < >|< PI<—=>1 T T T 0 0 0 0
J g v I a0 D N O I 1 D VW

€ 14 S 9 L 8 6 01 11 A €1 v ST 91 LT

(2 = apo3) uonoy induj jeusaixz

<MmoONO

= N

L8
PIOM

™M
—t

paom

N
-

paom

-
L]

paom

o
L]

Paom
PaoM
PaoM
paom
paom
paom
PIoM

paom

N ™Mm <« N O OW ~ O O

paom

T PAIOM

A - 40

pat3TIsnl 3331 ST piam 3abie] JT ‘piom 3ISeT UT pasn S3Tq JO laqunu

parztasnl juybtx st piom 39biey J1 ‘(Tewtdap)gl

piom 33biej auo juasaidai 03 pepaau spiom 31g-gT Twb Jo 1aqunN

(potaad 3 Aixand aTNPaYOSaI=()T {80UO ITNPaYISal=T() {BurTnpayosasi ou=Qp) : beld oInpayossay
(POTNPaYOsS=T !panpayos J0uU=()) :YOITMS PITNPaYds

T - (39s sTY3 103 pa3IndIN0 °q Ued YOTYM SWSIT JO ISQUNU WNEITXeW)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

193s1ha1 ejep Jo ssaippe 2103S TOIIUOD

193s1ba1 ssaippe Jo ssaippe 2103S T0I3U0D

1933nq Indano TeulaIXd JO pIoM ISITI JO SSaIppe 91035 UTeR

burTnpayossy 103 JuswLIOUI W]

SWT3 STYY I pajnoaxa un 03} UOT3OR 3IX3U 03 193UT0d

> < > < >|<—>1 0 0 0 T 0 0 0
o) | Y apo>d Uo T30V

€ 14 S 9 L 8 6 01 11 At €1 1 4¢ ST 91 LT

(8 = 9po0d) uonoy «:9:0 |eusaxy

<mOO

8 paoM
L paom
9 paom
S pIoM
v paom
¢ paom

¢ paom

T paom

A-4

i
1

i b
HHH

€- =INNOD T =W3ATY

-

=NOOAN € =NODIN

£en,£0dd =ZWVNZ
£enebas =JWNZ
£€n,z044 =TWINZ
£enz04dd =TWNNZ
£en, 1044 =JWINZ
£enTOda =AWINZ

6 =ENTNA S = 3dAL T =SSVDD
CT =ONLI€9 €7 =ONOIM (0 =dSWSD
6 =ONLI9 6T =ONOHM (0 =JSWSD

SENTASL =dWNINZ
6NECO =dWYNZ
6Nz00 =dWNZ
8Nz0o =dW\INZ
LNEOO =HWINZ

O = D O = m

0 =3NTVA 0 = 3dAL 7 =SSVID
0T =ONLIg9 6T =ONOEM (0 =JSWSD
60109 =dWNNZ
Lnzoo =TWNNZ

L0709 =UdWVNZ
o = D O = bt
L =TdAdA

T =ENTNA Q = 3dXL ¢ =SSVID
SaTIjud ISTTION

CENTIOD
EENITIOD
EEMITIOO
SEMITOO
gEMIIOO
EEMITIOO
£EMITONK
EEMIDOTO
£EMIDOTDO
£EMIDOTOO
£ EMIDOT1OO
£EMIDOTOD
£EMIDOTOO
£EMIDOTO
EEMIDOTOO
£EMIDOTIO
€ EMIDOTINL
eenTlad
€ENT0II
£enTOIa
eenTbaa
£en10aa
£enTlaa
€enTOaa
£enTdaa
genThad
£eNTOII<
£€n, 1044
£en, 1044
£€n, 1044
£en, 1044
£en, 1044
£en, 1044
gen, 1044<

*€enT0aa pue gen,T04d ‘ated ayy 103 3STT SUOT3DO8UUOD 8yl Ut Inojutad pue SSTIJUS ISTTIBU JY3 21e butmottO4

dieg doj4-di4 seqp pue doj4-dij4 O jo ejdwexg

A - 42

qaSYIA
qIASYIA

qISTIATY

ALEHAQUK

aIvo EEMIOOTIOD ¥S

JION 0
arwo ION T EEMITIO0 89
aIvo WO T TeENYOO 9% 0 4d01d 4I'ld
arvwo ION 0 E£EMID0TOO ¥S
aIvo JON T EEMIIOO 8S
3IvO ¥0 0 CENYOD 9y 1 4014 dI'ld

INOJUTIZ ISTT SUDTIOIOD
0 =MIATY 9T =ONLI9 PT =ONOEN 0
L =INNOD T =N3ATY ££n, 1034
L =INNOD (0 =¥3IAT £enT0aa
T =NODAN 7 =NODIN 6 =3NTVA £ = 3dAL T
0 =NIATY § =ONLI9 6T =ONOTH 0
T =INNOD T =MIASM €N, p0d3
? =INNOD T =33A®d genpyOad

ned doj4-dij4 seqD pue doj4-dii4 O jo 9jdwex3

=JSWSO
=TWNINZ
=TWNINZ
=SSV1D
=JSWSD
=JWNZ
=JWINZ

£enTdal 91

£€n, 1043 6

[431i4¢)
enyoo
TENPOO
TENYOK
£EMTIOO
£ENTTIOD
€EMITOD

(2]
<

<

Appendix B

Sample Initialization Text Output File

JI4¥YNIT SI JIVvd dNY o HILINVIZZZ 6
J1LVYO aNy o AWNHNAZZ2Z2Z 0T 0 JIVO aNvy AWNWNAZZZ2Z O
0 JIVO aNv d431INVIZZ2Z 6
alvo aNvy o 9Xx 9
JIvoe 30 © LX L 0 aivoe 30X 8X ¢
31LVD J0X O 8X 8 0 < A & g0 LX L
arvo 30 0 X ¢
ILvd yox o §X s 0 JIvd aNv 9X 9
31VO ¥0 0 £X €
JLYD i40 0 X ¥ 0 JLVDO 40X sX s
6 A &) gox o0 §X s 0 3LVD 490 X ¥
ILY¥YDO 30 0 ZX 2 0 3LVO q0 £X €
I3LIVYD LON 0 IX 1 0 3LYD 30 ZX 2
JLVYO a0 0 ZX 0 3LV LON IX 1
SSeTD edAz andiano emeN ®DoTA®Q 4 and3no sse1D edig sweN 8d>1A®Q #
iebbray beta edig e O T a e @ e o T A e a
ebp3 1esaea0y 3deuuo) [e 2 1 N 0 Seeceeceaaa —————) (m————————— u o T 3 e u T 3 s e (g-—-—-—=- >
L S I 1 S NOI D3I NNOD
(1 = S3IDIAIA Jd3INIJIA J0 YIEGWAN
0 0 0 0 0 AWWNAZ2222 01
0 0 0 0 0 d3ILINVYIZ2Z 6
0 0 0 0 0 8xX ¢
! 0 CXEFFENNNESN 0 0 0 LX L
0 sXFENNEEDR 0 0 0 9X 9
0 0 0 0 0 SX ¢
0 I EEEEEEEE] 0 0 0 v v
0 X PFEEEXEN 0 0 0 £€X ¢t
0 0 0 0 0 ZX 2
m B 4 T 0 T T X 1
B
mu..w m andano 3ndano entTeA enteA eweN (Tewioep) 4
| «) pe3eInoTeDd peuTjepsad NLTLDA Teuie3lx3 TePUIOIU] (—vm=——— e 5 1T A € Qe=———- ———)
” (4™
ﬁ e
M R S3INIVA ILNdLNno QINIAL3IA HLIM S3IDIA3Q
| nmu m sejeb puev‘io’‘iox‘jou Y3ITMm 103UNOD JTQ-¢ ANIHDODVK JLIOUVI
e
: : : - - : exy NOIIVZITVILINI HdOLVINWI DILSONOSYIA «xx«

a)i4 Indino 1xa] uonezijeniu) sjdweg

0 0 [} 0 0 0 0 0 0 0 0 0 0 (]] 0 0z
0 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-~~-~dung #1035 1®20T-——-— $8eIpPPpPY
] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0z1
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00T
—-—~~dung 1035 UTEW-—~- SS8IPPVY
oo0bve 0 oLeZ O 0062 0 [1 %4 0 0 0 0 0 0 0 0 0 ozZey
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [(X' R 24
~—=—-dung ©303S T013UOD===- sSSeIppvV
IbLEE 06102 ARNNAZ222 0T 01
LLLge 16002 J3ILINVYIZZ2Z 6 6
LLLEE grooz 8X 8]
o0LEE LEOOZ LX L L
9LLEE ££002 9X 9 9
LLLEE vZoo0Z SX S S
00LEE 0Z002 PX 4 14
00LEE v1002 £X € £
oo0LEE -p0002 ZX 4 4
o00LTLL 00002 X 1 T
2] W ewepn (Te320)4 (Tewroep)4
AR (Te320)iepedH (Te3D50)SSIPPY (=m——= —————————- @ 5 T A ® Qr———eemcmcee—— >
G.AIM (o ewT) 3®) S ¥ 3 A VY 3 H I DI1aaza TV¥Y I 3 INTI
DA.. - JTEYNI S JLYD aNvY o ¥3ILINVIZZZ 6
c JTEAVYNIT SI JLVO aNyY o YILINVIZ222Z 6
M o JTEYNIT SI 3LYD anNvY o ¥ILINVI22Z 6
dTEYNI S JLVYD aNvy o YILINVIZZZ 6
m 3TEYNT SI JLVYD aNvy o ¥ALINVIZZZ 6
o) 3T9YNI SIL JLVS aNvY o VILINVIZZZ 6
319VYN3I SI ILYD aNvy o ¥3LINVIZZZ 6
mm fx{ 3TEYNI SI JLvo aNvy o qIALTIANVIZZZ 6
O © 31dvNI sI 3LVO aNv o ¥43ILINVIZZZ 6
JTIYNIE SI JLVS aNv o TILINVIZZZ 6
3TEYNIT S JLvo aNv o0 YILINVAZZZ 6
JTEVYNIT SI 3LVYD aNvy o YILINVIZZZ 6
ITEYNI SI JLVYO aNvy o ¥3110V¥d22Z 6
dT9¥YNT SL arvo aNv o 431L1I0Vd222 6
JTEYNI S kA £ adN¥Y 0 43ILINVA2Z2Z 6
JIGYNT S JLVD aNvy o0 3LINVIZ222 6
JTEYNT SI JLIVS aNvY o ¥ILINVIZZZ 6
JTEYNT SIL JLVYD aN¥Y o0 d4ILINVIZZZ 6
JTEYNIT S JLVD aNvy o d3L1LINAVIZ2ZZ 6
JTEYNI S JLVYD aNY 0 d43L1INVAZ2ZZ 6
JTTEVYNI SI JLVD adNVv 0 Y3 LINVIZZZ 6
JTEYNI SI JL¥YD aNvY o ¥YILINVAZZZ 6
379¥YN3 SI JLVvO aNv o0 H3LINVJIZZZ 6
JTEYNI SI ILVD aNv o ¥3ILINVAZZZ 6
JTEYNIT SI A L] aN¥Y o HILINVIZZZ 6
JTEVYNIT ST JLVYD aNy o YILINVIZ2ZZ 6
dT9VYNT ST JrLvo aNvy o ¥3LINVIAZ222 6
JTEYNR S& kA g aNv o ¥43LINVYIZ222 6
JTEYNT ST 3LVYD aNyY o YILINVIZZZ 6

Appendix C

Sample Netlist File

>FPTS1FO00
FPTS1FQO
>FPTS1FO1
FPTS1FO01
FPTS1FO01
>FPTS1FO02
FPTS1FO02
>FPTS1FO03
FPTS1FO03
FPTS1FO3
>FPTS1F04
FPTS1F04
FPTS1FO04
>FPTS1FO5
FPTS1FO0S
FPTS1FO05
>FPTS1FO06
FPTS1FO06
>FPTS1F07
FPTS1FO07
FPTS2F00
FPTS2F00
FPTS2F00
FPTS2F00
>FPTS2F01
FPTS52F01
FPTS2FO1
FPTS2FO01
>FPTS2F02
FPTS2FO02
FPTS2F02
FPTS2F02
>FPTS2F03
FPTS2FO03
FPTS2FO03
FPTS2F03
>FPTS2F04
FPTS2F04
FPTS2F04
FPTS2F04
>FPTS2F05
FPTS2FO05
FPTS2FO05
FPTS2FO05
>FPTS2F06
FPTS2F06
FPTS2FO06
FPTS2F06
>FPTS2F07
FPTS2F07
FPTS2F07
FPTS2F07
>FPTS2F08

© 0O 00 0 0 C O OO0 0 0 00 O 0 00 OO0 0 OO0 0 O O 0 0 0 0 O 00 0 O O C 0 O 0 OO0 0 O 0006 O oo oo o

Sample Netlist File

CLASS=
ZNAME=
CLASS=
ZNAME=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
ZNAME=
CLASS=
ZNAME=
ZNAME=
CLASS=
ZNAME=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME =
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=

1

TYPE =
TS1G20
TYPE =
TS1G03
TS1G06
TYPE =
TS1G02
TYPE =
TS2G43
TS1G20
TYPE =
TS2G45
TS1G20
TYPE =
TS2G04
TS1F00
TYPE =
TS1G20
TYPE =
TS1G20
TYPE =
TS2G09
TS2G10
TS2G11
TYPE =
TS2G14
TS2G10
TS2G12
TYPE =
TS2G13
TS2G09
TS2G1l2
TYPE =
TS52G1l4
TS2G13
TS2G1l1
TYPE =
TS2G19
TS2G18
TS2G17
TYPE =
TS2G22
TS2G20
TS2G18
TYPE =
TS2G21
TS2G20
TS2G617
TYPE =
TS2G22
TS2G21
TS2G19
TYPE =

5 VALUE=

5 VALUE=

5 VALUE=

5 VALUE=

5 VALVE=

5 VALUE=

5 VALUE=

5 VALUE=

5 VALUE=

5 VALUE=

5 VALUE=

5 VALUE=

5 VALUE=

5 VALUE=

5 VALUE=

S VALUE=

5 VALUE=

NICON=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=

~ O O O WO OO WO OO0 WO OO WO OO o WO OO O WO O 0 W O O O WO B O M O N O MFMENOKIPBNOIKEFOIO-RNO =

NECON=
CONNT=
NECON=
CONNT=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
CONNT=
NECON=
CONNT=
CONNTs=
NECON=
CONNT=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=

O 0O O O 0 0O 0 0O 0O QO 0 0 0O OO0 OO0 O O OO O O O OO O @ O 0 0 0O O O WO OO0 O O 0 0 0 6060 0 0 o0 o oo O

FPTS2FO08
>FPTS52F09
FPTS2FO09
>FPTS2F10
FPTS2F10
>TS1IFO0O
TS1FO0O
TS1FO0O
TS1FO0O
TS1FO0O
TS1FO0O
>TS1FO01
TS1FO01
TS1FO01
TS1FO01
TS1FO01
>TS1F02
TS1F02
TS1F02
TS1F02
TS1F02
>TS1FO03
TS1FO03
TS1FO03
TS1F03
TS1FO03
>TS1F04
TS1F04
TS1F04
TS1F04
TS1F04
>TS1FO05
TS1FO05
TS1FO0S5
TS1FO05
TS1FO05
>TS1FO06
TS1F06
TS1FO06
TS1FO06
TS1FO06
TS1FO06
>»TS1F07
TS1F07
TS1FO07
TS1FO07
TS1F07
TS1FO07
>TS1G00
TS1G00
TS1G0O0
>TS1G01
TS1G01
TS1GO01
>TS1G02

© 0O 0O 0O OO0 0 0 0 0 0 00 0 O 0 0 O O @ OO OO0 0 0 OO0 G 0 0 O OO0 O O O O 0 O 0 0 O O O O 0 O 0 © O 0 O o o o

ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CSMSF=
CSMSF=
CLASS=
FFVAL=
R =
ZNAME=
CSMSF=
CLASS=
FFVAL=
R =
ZNAME=
CSMSF=
CLASS=
FFVAL=
R =
ZNAME=
CSMSF=
CLASS=
FFVAL=
R =
ZNAME=
CSMSF=
CLASS=
FFVAL=
R =
ZNAME=
CSMSF=
CLASS=
FFVAL=
R =
ZNAME
CSMSF=
CSMSF=
CLASS=
FFVAL=
R =
ZNAME=
CSMSF=
CSMSF=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CSMSF=
CLASS=

1

2
72

o o

o

o

TS26G44
TYPE = 5
TS2644 °
TYPE = 5
TS2G44
TYPE = 0
u = 0
FPTS1FO00
REGNO= 4
REGNO= 6
TYPE = 0
U = 0
FPTS1FO1
REGNO= 4
TYPE =

u = 0
FPTS1FO2
REGNO= &
TYPE = 0
v = 0
FPTS1FO03
REGNO= 5
TYPE = 0
v = 0
FPTS1FO04
REGNO= §
TYPE = 0
v = 0
FPTS1FO5
REGNO= &
TYPE = 0
u = 0
FPTS1FO06
REGNO= 5
REGNO= 6
TYPE = O©
U = 0
FPTS1FO07
REGNO= 5
REGNO= 6
TYPE = 3
TS1FO00
REGNO= 4
TYPE = 3
TS1G02
REGNO= 4
TYPE = 1

VALUE=

VALUE=

VALUE=

BITNO=
BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
BITNO=
VALUE=

BITNO=
BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

17

13

REVER=
NICON=
REVER=
NICON=
REVER=
NICON=

REVER=
REVER=
REVER=
NICON=

REVER=
REVER=
NICON=

REVER=
REVER=
NICON=

REVER=
REVER=
NICON=

REVER=
REVER=
NICON=

REVER=
REVER=
NICON=

REVER=
REVER=
REVER=
NICON=

REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=

- O M O - O

~ o o K

- O O

- O O = © O + O O =

CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=

CONNT=

NECON=

CONNT=

NECON=

CONNT=

NECON=

CONNT=

NECON=

CONNT=

NECON=

CONNT=

NECON=

CONNT=

NECON=

CONNT=

NECON=

CONNT=

NECON=
CONNT=

NECON=

N O O O O O

TS1G02
>TS1G603
TS1G03
>TS1G04
TS1G04
>TS1G0S
TS1G05
>TS1G06
TS1GO06
TS1G06
TS1G06
TS1G06
TS1G06
TS1G06
TS1G06
>TS1G07
TS1G07
>TS1G08
TS1G08
>TS1G09
TS1G609
>TS1G10
TS1G10
>TS1G11
TS1G11
yTS1G12
TS1Ggl2
>TS1G13
TS1G13
TS1G13
TS1G13
TS1G13
TS1G13
TS1G13
TS1G1l3
TS1G13
TS1G13
>TS1G1l4
TS1G14
T51G14
>TS1G15
TS1G15
YTS1G1l6
TS1G1l6
>TS1G17
TS1G17
TS1G17?
>TS1G18
TS1G18
»TS1G19
TS1G19
>TS16G20
TS1G20
>TS1G21
TS1G21

© 0 0 0 0 0 00 0 0 0 00 0 00 00 00 0 OO0 OO0 O O 0 O © O 0 0 O O O 0 OO0 OO0 0 OO0 00 00 0 CO0O6O OO OO OO

ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME =
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=

[y

- o

TS1FO01
TYPE . =
TS1G04
TYPE =
TS1G05
TYPE =
TS1G06
TYPE =
TS1FO07
TS1F06
TS1FO0S
TS1F04
TS1FO03
TS1rO02
REGNO=
TYPE =
TS1G08
TYPE =
TS1G09
TYPE =
TS1G10
TYPE =
TS1G11
TYPE =
TS1G1l2
TYPE =
TS1G13
TYPE =
TS1G607
TS1FO01
TS1F07
TS1FO06
TS1FO05
TS1F04
TS1F03
TS1F02
TS1G621
TYPE =
TS1F02
REGNO=
TYPE =
TS1FO03
TYPE =
TS1F04
TYPE =
TS1FO05
REGNO=
TYPE =
TS1FO06
TYPE =
TS1FO07
TYPE =
TS1G20
TYPE =
TS1G22

VALUE=

VALUE=

VALUE=

VALUE=

BITNO=
VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

BITNO=
VALUE=

VALUE=

VALUE=

BITNO=
VALUE=

VALUE=

VALUE=

VALUE=

REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=

O F O KF O+ O +H O 0 F O KF O F O O O OO0 0 O OO0 O 0 W O O K O v O H O O I OO0 OO O O O O O I O FHF O M O

CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=

NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=

NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=

NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=

NN NN MON O OO0 0 OO0

© 0O 0 0O 0 0O 0 000 OO0 Qo

L A
MO WW W W W W Wwo

~N g0 o

© 0 00 JoOo 9o

>TS1G22
TS1G22
>TS1G23
TS1G23
TS1G23
TS1G23
TS1G23
>TS1G24
TS81G24
>TS1G25
TS1G25
»TS1G26
TS1G26
TS1G26
TS1G26
TS1G26
>TS1G27
TS1G27
>TS2F00
TS2F00
TS2FO00
TS2FO0O
>TS2F01
TS2F01
TS2FO01
TS2F01
>TS2F02
TS2F02
TS2F02
TS2F02
>TS2F03
TS2F03
TS2F03
TS2F03
>TS2F04
TS2F04
TS2F04
TS2FO04
>TS2F05
TS2F0S
TS2F0S
TS2FO0S5
>TS2F06
TS2FO06
TS2F06
TS2F06
>TS2F07
TS2F07
TS2F07
TS2F07
>TS2F08
TS2F08
TS2F08
TS2FO08
TS2F08

OOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOOO

CLASS=
ZNAME=
CLASS=
ZNAME=
ZNAME=
CSMSF=
CSMSF=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CSMSF=
CSMSF=
CSMSF=
CLASS=
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CLASS=
FFVAL=
R =
ZNAME=
CSMSF=

1

- O O o

2
72
0

72

72

2
72
0

0

TYPE = 5
TS1G23
TYPE = 5
TS1G24
TS1G25
REGNO=280
REGNO=281
TYPE = 1
TS1G24
TYPE = 5
TS1G26
TYPE = 5
TS1G27

REGNO=280

REGNO=281
REGNO=281
TYPE = 1
TS1G27
TYPE = 1]
U = o
FPTS2F00
TYPE = 0
u = 0
FPTS2FO01
TYPE = 0
u = 0
FPTS2F02
TYPE = 0
u = 0
FPTS2FO03
TYPE = 0
u = 0
FPTS2F04
TYPE = 0
u = 0
FPTS2FO0S5
TYPE = [
U = 0
FPTS2FO06
TYPE = 0
u = 0
FPTS2F07
TYPE = 0
U = 0
FPTS2FO08

REGNO= 7

VALUE=

VALUE=

BITNO=
BITNO=
VALUE=

VALUE=

VALUE=

BITNO=
BITNO=
BITNO=
VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

BITNO=

17
15
1

9

17
17
16

1

NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=

NICON=
REVER=

NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=
NICON=
REVER=
NICON=

REVER=
NICON=

REVER=
NICON=

REVER=
NICON=

REVER=
NICON=

REVER=
NICON=

REVER=
NICON=

REVER=
NICON=

REVER=
NICON=

REVER=
REVER=

o O O 0O 0O O M O - O MM O 0 0 ON O W

NECON=
CONNT=
NECON=
CONNT=
CONNT=

NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=

NECON=
CONNT=
NECON=

CONNT=
NECON=

CONNT=
NECON=

CONNT=
NECON=

CONNT=
NECON=

CONRNT=
NECON=

CONNT=
NECON=

CONNT=
NECON=

CONNT=
NECON=

CONNT=

o O N O O

o w o O o o

>TS2F09
THIFOY
TH2F09
TS2F09
TS2F09
>TS2F10
TS52F10
TS2F10
TS2F10
TS2F10
»TS2G00
TS2G00
T52G00
TS2G00
TS2G00
TS2G00
>TS2G01
TS2G01
TS2G01
>TS2G02
TS2G02
T52G02
»TS2G03

TS2G03

TS2G03
>TS2G04
TS2G04
TS2G04
TS2G04
TS2G04
TS2G04
TS2G0d
TS2G04
TS2G04
TS2G04
>TS2G05
TS2G0S
TS2GO0S
T$2G05
TS52G05
TS2GO0S
>TS52G06
TS2G06
TS2GO06
>TS2G07
TS2G07
TS2GO07
>»TS2G08
TS2G038
TS2GO08
»TS2G09
TS2G09
>TS2G10
TS2G10
>TS2G11

QO O O O 0O O 0 O 0O O 0 O O O O O O O O © © © O© O O O O O O O O O O O O O O O 0O O O© O O 0O OO OO OO OO =

CILASS=
FFEVAL
1

ZNAME
CSMSF=
CLASS=
FFVAL=
R =
ZNAME
CSMSF=
CLASS=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
CSMSF=
CLASS=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=

"

2
12

o

[

o

o

o

o

[~}

o

[~

o

o

TYPE

[}

u :
FPTS2F09
REGNO=

TYPE

u =
FPTS2F10
REGNO=

TYPE =

TS2G27

TS2G35

TS2G39

TS2F00

REGNO=

TYPE =

TS2FO01

REGNO=

TYPE =

TS2F02

REGNO
TYPE =
TS2F03
REGNO=
TYPE =
TS2F00
TS2FO01
TS2F02
TS2F03
TS2F04
TS2F05
TS2F06
TS2F07
REGNO=
TYPE =
TS2G31
TS2G33
TS52G37
TS2F04
REGNO
TYPE =
TS2F05
REGNO=
TYPE =
TS2F06
REGNO=
TYPE =
TS2F07
REGNO=
TYPE =
TS2G15
TYPE =
TS2G15
TYPE =

it

0

5
0

0

VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

BITNO=
VALUE=

VALUE=

VALUE=

(%)

N

~}

10
9

9

9

9

NICON=

REVER=
REVER=
NICON=

REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
REVER=
REVERs=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
REVER=

NICON=

REVER=
NICON=
REVER=
NICON=

—

[y

- O M O O O H O O H O O O O OO0 O b © O O O O O O O C M O© O© k O 0 I O O =M O O O O © b O =

NECON=

CONNT=

NECON=

CONNT=

NECON=
CONNT=
CONNT=
CONNT=
CONNT=

NECON=
CONNT=

NECON=
CONNT=

NECON=
CONNT=

NECON=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=

NECON=
CONNT=
CONNT=
CONNT=
CONNT=

NECON=
CONNT=

NECON=
CONNT=

NECON=
CONNT=

NECON=
CONNT=
NECON=
CONNT=
NECON=

~N O O O =

~ -

-3
-3
-3
-3
-3
-3
-3

-~ O O O

~

~

0o O O O O

TS2G1l1
>TS52G612
THh2G12
>»T52G13
TE726G113
SIG26)1
TS52614
>TS52G15
TS2G15
>TS2G1l6
TS2G1l6
TS2G1l6
TS2G1l6
>TS2G17
TS2G1l7
>TS2G18
TS52G18
>TS2G19
TS2G19
>TS2G20
TS52G20
>TS2G21
TS2G21
»TS2G22
TS2G22
»TS2G23
TS2G23
>TS2G24
TS2G24
TS2G24
TS2G24
>TS2G25
TS2G25
TS2G25
>TS2G26
TS2G26
>TS2G27
TS2G27
>TS2G28
TS2G28
>TS2G29
TS2G29
>TS$2G30
TS2G30
>TS2G31
TS2G31
>TS2G32
TS2G32
>TS2G33
TS2G33
>TS2G34
TS2G34
>TS2G35
TS2G35
>TS2G36

O O 0O 0O 0 0 00 0 Q0 C OO OO0 O & OO0 O 00 OO0 o O O 25 0 O

© O 0O 0O 0O O 0O 0O O OO0 O O O 0O O O O OO0 O 66 o o o

ZNAME
CLASS
ZNAME -
CLASS=
ZNAME =
CLAGS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
ZNAME=
ZNAME=
CLASS=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=
ZNAME=
CLASS=

£

ORIGINAL PAGE IS
OE POOR QUALITY

[=]

TS2G15
TYPE =
T52615
TYIE =
TS2615
TYPE =
TS261
TYPE
TS26G16
TYPE =
TS2G26
TS2G636
T52639
TYPE =
TS52G23
TYPE =
TS2623
TYPE =
TS2623
TYPE =
TS2G23
TYPE =
TS2623
TYPE =
TS2623
TYPE =
TS2G24
TYPE =
TS2G30
TS2G34
TS2G37
TYPE =
TS2626
REGNO=
TYPE =
TS52G28
TYPE =
TS2G28
TYPE =
TS2F08
TYPE =
TS2G30
TYPE =
TS52G632
TYPE =
TS2G32
TYPE =
TS2F09
TYPE =
TS2G38
TYPE =
TS2G38
TYPE =
TS2G40
TYPE =

%

"

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALVE=

VALUE=

VALUE=

VALUE=

BITNO=
VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

VALUE=

REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=

REVER=.

NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=

CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECONw
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=

NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=

O = O 0 0 O 0 0 0 00 0 0 © O O O O O O O O O O O O O O O o oo oo

O O 0O 0 0O 0 0 WO OO0 OO0 0 O oo oo o

TS2G36
YTH2G Y
TE2G137
>TS2G38
TS2G38
>T32G39
TS2G39
>TS2G40
TS52G40
>TS52G41
TS2G41
>TS52G42
TS52G42
>TS52G43
TS2G43
TS2G43
TS52G43
TS2G43
TS2G43
>TS2G44
TS2G44
»TS2G4S
TS2G45
TS2G45
TS2G45
TS2G45
>TS2G46
TS2G46
»TS2G47
TS2G47
TS2G41
TS2G47
>TS2G48
TS2G48
>ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
Z2ZFAULTER
ZZZFAULTEP
ZZZFAULTER
2ZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
2ZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZ2FAULTER
ZZZFAULTER

O O O 0O 0O O O O O O O O 0 O 0 O OO 0 O O O O 0 O O O 0 o ©

L I I S T = o = T T T TP SO S PO
O O O O ©C Q0 O O © © O 0 O O O O © O O O =

ZNAME=
CLASS = 1
LZNAME=
CLASS= 1
ZNAME=
CLASS= 1
ZNAME=
CLASS= 1
ZNAME=
CLASS= 1
ZNAME=
CLASS= 1
ZNAME=
CLASS= 1
ZNAME=
ZNAME=
ZNAME=
ZNAME=
CSMSF= 0
CLASS= 1
ZNAME=
CLASS= 1
ZNAME=
ZNAME=
ZNAME=
ZNAME =
CLASS= 1
ZNAME=
CLASS= 1
ZNAME=
CSMSF= 0
CSMSF= 9
CLASS= 1
ZNAME=
CLASS= 13
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME =
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=

ORIGINAL PAGE IS
OF POOR QUALITY

TS2G40
TYUE = 1 VALUE= 9
T52G41
TYPE = 1 VALUE= 9
TS2G41
TYPE = 1l VALUE= 9
TS§2G41
TYPE = 1 VALUE= " 9
TS2G41
TYPE = 3 VALUE= 9
TS52G42
TYPE = 5 VALUE= 9
TS2F10
TYPE = 5 VALUE= 9
TS2F08
TS2F09
TS2F10
TS2G46
REGNO= 7 BITNO= 17
TYPE = 1 VALUE= 9
TS2G44
TYPE = 5 VALUE= 9
TS2G27
TS2G25
TS2G29
TS2G31
TYPE = 5 VALUE= 9
TS2G47
TYPE = 5 VALUE= 0
TS2G48
REGNO=280 BITNO= 17
REGNO=281 BITNO= 14
TYPE = 1 VALUE= 9
TS52G438
TYPE= 1 VALUE= 0

Z2ZZDUMMY
ZZZZDUMMY
22ZZDUMMY
2Z2Z%ZDUMMY
2ZZZDUMMY
Z22Z2Z2DUMMY
ZZZZDUMMY
ZZ22ZDUMMY
2ZZ2ZDUMMY
2ZZZDUMMY
2ZZ2ZDUMMY
ZZZZDUMMY
Z2ZZZDUMMY
ZZZZDUMMY
22ZZDUMMY
2ZZZDUMMY
2ZZZDUMMY
Z2Z22DUMMY
ZZZZDUMMY
22ZZDUMMY

REVER=
NICON:=
REVER=
NICON=
REVERX
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
NICON=
REVER=
NICON=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=

CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
CONNT=

NECON=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
CONNT=
NECON=
CONNT=
NECON=
CONNT=

NECON=
CONNT=
NECON=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=

O N O O O O 0O 00 O O ~N O O 0O 0 O 0O O O O o0 O 0

@ O 0 O W @ DWW D@D O O O O M e o~ O O

ZZZFAULTER
ZZ2FAULTER
ZZZFAULTER
ZZZFAULTFER
Z7ZZFAULTLR
ZZZ2FAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
ZZZFAULTER
Z2ZZFAULTER
>ZZZZDUMMY
ZZZZDUMMY
Z22ZZDUMMY

10
10
10
10
10
10
10
10
10
10
11

10
11

ZNAME=
ZNAME=
LNAME=
ZNAME=
ZNAME =
ZNAME=
ZNAME=
ZNAME=
ZNAME=
ZNAME=
CSMSF=
CLASS=
ZNAME=
CSMSF=

ZZZZDUMMY
ZZ2ZZDUMMY
ZZZZDUMMY
Z2ZZZDUMMY
ZZZZDUMMY
ZZTIZIDUMMY
ZZZZDUMMY
Z2ZZDUMMY
Z2Z2ZZDUMMY
ZZZZDUMMY
0 REGNO= 12
1 TYPE= 1
22ZIZDUMMY
0 REGNO= 13

BITNO=
VALUE=

BITNO=

REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
REVER=
0 REVERs=
0 NICON=
REVER=
0 REVER=

Qo O - O 0O O 0O 0O O O O O O O

CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=
CONNT=

NECON=
CONNT=

> ® D W >d® D O

[~

Appendix D

Sample Emulation Text Outputs

GE IS
UALITY

ORIGINAL pa
DE POOR q

aevy, WIS dwo)

1083y vIvidwo)
420, wividwu)
4wy @I dwoe)
AV, P dw0)
L oNyy @jyd|dwo)
webie, WV LAWO)
A-EyS 39| dwe)
RoNYS 9JR|dwo)

Lol -Nd

oL l-NJ

11°1-nNJ

LT l-NY

G ieNd

P |

o 1-NJ

B 8-NJ

NV 4

NVJ

NV

NVJ

NVJ

NV

NVJ

NVJ

NVJ

@ v~ (Le3a0) 21

r g

8% O 109801 T11900118111
G4 O3 SUUPUI | 1b0B 1BUBR
uX O3 BLILTINLIBORI 10000
YN vl UHIBOBOI L IO 108N
<x O3} AGBFABVIILASIITINI

VAV EYT =20 NYL v o ulTY-NVS DAV 9 =3Z1S xvW 1

SATLATHT e sn naes v del JudondUs) L 181 1088
GRTPA OV a0%UNL e 41 qQ wippIW 1IEHBYSL I IHT 10008
IR NG RO o QS SERMEESS I IIGTLIALT

~4L1S XVAN 1

uXx O PPALKUILIBEATIIBL]]
89X 9% IOugOBT T\ UELTEITI]
S O% VUBBUB L VU0 LI BUS
UAY MU ¥=NVI DAV € 23218 XVW 1

GXPEA" 1S g a0 AL IMOUSEUBI LISTTTIELT
YXEPX O AV 5 g v PRI LRUEBBUIILIMIIILLY
VAV Y4° 1=Xd NV UAV U r-NVS DAV ¢ -3Z21S XvhW 1

VAV PGS 1-Ad NV UAV ul°¥-nuVY 9AVY €

YAV B t-R1 N/

G4 OV VBUBEI I I UERTTALITT

L) oyl ISNE1 LBIBR
e OV MO MBoTILTINT
v-hVJ3 JAV ¢ ~421S Xvh 1

Jo uS (| ASAUBRUV LS00
IR AN AL [T ARRY ARRY T

YAV (ST =80 NS LA aL

YA LA [A e aupUineg
Da'yk OV AoBitiin

SAV MLV -RAD NYLG AN ol TK-NVY 9AY 2 =J3Z1S XVN 1
WA OY (LU LIOBLEBITL

SRE AR N ARRY TARRY

VAV Mo C-nld W/ d S0 v-HlVY SAV ¢ -4iZlS XvW 1
Yttt A ciavunel 3O US| TUBEYBYBIIIBTLIALT

VAV WU 1-4A4 AVva YAV BZ V-NVJ YAV 1 «J3ZIS XVWN |
A O} PPNIUIT LTI IZBTITTITTY

AV U W-53 NV UMV JCTV-NV3 OAV T -1Z1S Xvn 1

1

| 74 143
LIy 1Y
94L0¢
89L9E
89LBLL
=321

—ERER -

KiInW

BevLr o

18Y€e &

a8Yi9 1
3415 NIW

BOLBEL T

18s8EL 1

10c8t ¥
«321S NINW

19v€EL9 1
s83C(9 1
=321S NIW

RYIT TR

LIV O
’LBLL 1
23218 Nin

BEYEE &
aaveEL9
-321%

10L8EL 1
1980 o
-34215

loyees 1
«3ZIS NIW

gL LL d
=3Z1S NINW

NIinW

NINW

Jequny Lag

ve

17

g2

8°1

t°1

1

¥l

X LEPR2
X Meeaz
9X €ttom2
€EX rviam2
IX 288092
=3ZIS NIVLS DAV 6
SX vags2
SX y2e02
X EvA82
*3/18 AJVLS OAV 8
X Eccooe
EX vigm2
IN S8sp2
=3Z1S AJVLS OAVY ¢
ZX veuaz
X vZeaz
=3Z1S NIVIS 9V 9
X #2442
EX rige2
IX se9s2
<3418 AIVLS AV S
exX roee?
SX 2882
=3Z1S AOVLS DAV ¢
EX ri@g@2
IX 80882
s3Z1S AOVLS SV E
<X Vg8
“3Z18 AIVIS AV 2
IX #egp2
=3ZIS XNIVLS 9V 1

L 9
y L4
9 £
€ 2
1 1

11 LJ8
2 €
S 2
(']]

3 ol
9 2
€ r4
! I

¢)]
r4 e
S I

9 -,
14 4 '
€ r4 o
! 1

S =i
4 4
S 1

14 sl
£ 2
1 !

€ =)
e 1

4 =)
1 ¥

1 =]

lriug: gl

13WIL

L{8-YVW-6

:diva

$4S17 1nvi
iHILVE

2.319-E) i INIHAYN 139WVL

O TN NN

sss NOILVINWI JILSONIVIQ sss

4.

h q—.‘E“’ﬁ . oo v

ORIGINAL PAGE 13
OE POOR QUALITY

BEILAHT 3INIL LB-¥VW-6 13LVU

4 =321 XYW 1 -3215 NIW ¥°2 =3Z1S AJVLS IOVU3IAV
o) o ' a¥ u §'4] 8 g '] J 8 '] ' o
c=--dng 9403y NIV)-=-== G 21 -t S$EJIPPY, ~
o r'4 ') o o 4 '] '} a g ' 'l 2 g a agt !
----dwng #4035 U[CW---- F] 21 s sso.uppy]
') I*4 N ~ i 1] I I I ¥ i 14 R ') vJIBY
~—e-dung BUOYS {wd, UG~ —== F] PA =1 s50IpPY

&‘ (L<"42v, h,l.r.::u*, ot - wdid AV 3137dWOT ST NOY NOIL Jb!hlll&

“ vkt oGl gt v 12 Yn 40VLEL CAVADOIINEL ® 3ZIS ADVILS &
(R L AN (VIR 5 N G VA S M1V B {IVLAI0IIANWIL ® FZIS AIVLS €
Vsl 40 IR L v FLYS ADVLAS 2 t (IWLI0)3WIL % 3ZIS AIVLS £ £
CIVREJ3UIIWIL ¥ 3218 4OVLIS 9 4 CIVLD0)3AWIL ® IZIS AIVLS 9 4
CIVWEDAQ)IWEL ¥ 3ZIS ADVLIS S € (IViJ0)3IWIL T 3IZIS NIVLS § €
CIVHIDAAYIWIL R 3715 ADVLS ¥ b4 (IVIJ013IWIL B 3IZIS NIVLS ¥ 4
CHOMEDGUIRTL 0 21 40VLsS € 4 VIAVLIIJOIIKWIAL ? IZIS MNIVLS E <
i PINEL Y a7, dovls 2 I VIVIJ0)3IWIL % 3ZIS AJVAS O I
Cashdh PV IREL @ 1S ADVLS I { IVLD0)IWIL 2 321S JNIVLS 1 1
G doquny uny
\ s3Lne) oy F1SIT 1nvd
\ﬁ WY TWas) ‘9Z}§ YIRS ‘@ uny Moys IHOLYE
. $0386 PUB® 10" JUX*FOU YA 4OIUNOI- 31 Q- IN T H G lkha .ze
B i.KM o . " "
BEIZP: Q1 INIL L8~-dVhW-6 :3iVQ svs NOILVINWI JILSONIVIQ wsse
s - : . .- . L3 [BRI ' ot :
S .
‘ K i
+ !

_“ ¢ s1dwexy

[J) u ') -4 o Y] . 34 -y I’} 1Y I o
q o T wra£|||l°

) ') J . o t ' 1) 1 1 1] v 4

o ooy

P F'3

=1 cSeIpPY
i
i

~emedWNg @0}y VAU e - =) S§I4PPY
1) ') J I g o o o) g a & , g ']] 9 '] [2!
~e~-dwng @40}, UJLR---- 8 81 =1 s§saJ4ppy
o 2 Y] b o Y o i 1 I | 1) € a1 g o8y
—ee=dWNQ 4035 {CAFUU)-—-=~ 8 g1 =4 8§88 JPPY
g) v o 4 Y Y]) g 2 g ¥4 '] a g g ool
~---duwnQg 94035 uilBp-—== ¢ ¥ =} $SS34ppY
4 g o Iy g I} I) 1 1) I I € L g oBey
—e~--dung SJ0YS [CIFUSYm-—= ¢ L =l $$S24ppY
4 "] o] Y v)] 4 -4 g '} '] g 9 4 a1
~-=--dung 94035 UCW-—-~- 9] =l $d4pPY
Y I’} o o i Y/) u i 1] I'§ l Z 9 g BoBY
-—=~JdUWNQ @403§ | CUIFUO)-=~-= g 9 =] SS34ppy
I’}] U & u " v o b - 4 -4] af I’ I '} gl
ce~-dWNQ 9403Y L - -=-= § [=] $$94ppPY
I+ '] V J 1) i u) 4 8 [da] 2 S 8 ooy
~---dwnQg @403 [VIIUO)--~-- § g =} SS9 4PPY
™
o I I ' o M) L o i '} a g 2 a a 9 291
~e—-dun(403§ U} RNum—= § % =} ssa4ppy !
Q
B §] g u b o '} ']] g 1 i I'4 1 14 [] sagy
-~--dWnQ 94035 | O4JUOYeu—- ¢ [-] (1 L PT-1-1"
g) g '] g o ' g g I g "] a 9] I ”"i
~=-=dwng %4035 U}BY<=~-- § £ al S8 .ppY
I’} q I’} o y J I} 8 1’4 g -] 1 1 1 € | a8ey
~ew-dung 94033 | GdIUC)~wm- E £ =) S88.4ppY
J ']) '] o W N 4 1Y g I}] 3 ']] I 4 201
~---dwng 9403y UjEN---= 2 2 -l S$S9JppPY
&] I} '} s i y g a g) '} i ') A a Bgagy
ce--dWng @403$ (04IUCY-mw- 2 2 =] $694ppyY
o) & g 4 ~ o 2 g g g g 5 g 8 1
e m=dUNJ Guu}y Ul —= | 1 =1
I § 'y i) '} © b I’} 4 g a4 1
m—— =1
k N 1 dequny uny Jﬂt“
< s3tney oN 11S11 LNV
sdung A40wdp Moys THJLVE
5@IUE PUL® Uu' JLA'Suu YR IM J@JUROD 31 G-F ”wz—:ui

L9LB Y1 S3WIL . lu=-dVik-b. SHLVQ s4x NOILVINWI JILSONIVIQ sas

b ! i :

ORIGINAL PAGE 1S
DE POOR QUALITY

PRy

e 1~-UNJ
ECT1~uNyd
YET 1-ONy
F1°1=0NJ
€L 1-0N3
SZ° 1-=0ON3
g5 ° 1=0NJ
gy 1=0N3

AAHHHVCzL

)
8

NV J
NV J
NV i
NV3
NV 4
NV
NV
NV 3
NVJ

DAV LY -
GAV YU -
DAV ML 1 -Kd
AV vs T 1-X13
YAV L8 1-x3
AV P5°1-X3
AV g9°2=X3
YAV g 1=X]

w (@ P
4

L

NV
NV
NV S
NV4
LA
NV4
NV3
NV
KV 4

AV Wl TV-LNONVY
AN WOV~ LNONV Y
DAV oI v-40n0NY)
VAV BT F~LNONVI
AV U v~ LNOKNV S
YAV U< V<LNONV S
DAV B2 ¥-1NONV4
YAV HZ°v<LNONVS

DAY O LNIONY J

¥ ot1dwexy

c2:8p: 9

ORIGINAL PAGE IS
DE POOR QUALITY

$3WIL L8-dVW-6 :34iva

9

S +3ZIS XVMW I -3Z1S NIW 9°2 =3ZIS XIVLS 39V¥IAV
(1%320) 2] (temoep) 41 *IAIL LY 34374W0D SI NNY NOJLVIAWI=--~

<t
YAV § =321 XVH 1 <3Z1% NIW v°2 =321S AJViS IAV 6 11 =)'
OAV € =3ZIS XVMW | <4218 NIW 1°C =3ZIS NIVAS DAV 8 P R
DAV & 3218 XWW 1 “321S NIW B2 =3Z1S AJIVLS 9AVY L L -]
9AV £ =32IS XVW 1 <3415 NIW 871 =3Z1§ XOVIS DAV 9 3 -1
AV € =3ZIS KVNW 1 2321S NIK 6°1 =3Z18 NIVLS DAV § s .l
9AV 2 w3ZIS XVW I »3ZIS NIW §°1 =3Z1S ¥IVAS AV ¥ y oL
DAV 2 =3ZIS XVW 1 . =32IS NIW £°1 =3Z18 NIW4S AV & £ .l
SAV I =3ZIS XVW 1 ' =3ZIS NIW #°1 =3ZIS XOViS 5AV 2 2 -4
E:G “3ZIS XV 3215 Niw(8° 1) =3Z1S Novis sav =L

Jaquny uny i

5 #

novwﬂ

12:88:81] 13411 *

b:r.;o.gex.vb: MM ;Jv::OU 219-¢

i
mmf-x<z-w)3iva
- _

M

i

f

9

Juy

i
-
S

$3Lhey oy
7 9w}l) Mmoys

s NOILVYINNI

t3INIH ¥

-ﬂ $1S1T 1nvd
1HOLYA

.unﬁmbtu<.a wop

¢ atdwexy .,_ : | m

E1ICEHY S3INIL LB-UVW-6 :31iVg
S =4Z1S XVW | =3Z15 NIW P°2 =3Z1S JOVLIS 35Vd3Av
(18350) 21 (L®Wjoaep) g1 =3WIL 1V 31314W02 SI NNy NOLLIVINWI----

D-5

ORIGINAL PAGE 1%
OF POOR QUALITY

n [&

x x
MM"WWW\D\DNNNQO“U\V\"QM
lNI'ﬂI..I.I"III.'I'l.“
FPPF—'—F’-.—’-’-.—.—"FQ—P'—'—P’-F“'

1 doquny uny

\
ﬂ\ §$3|ney & $1S17 10wy

©POW P3| AdIQQY U} ¥283I§ MOYS

El1:2Es81 s3WIL L8-UVH-6 :31iva
§ B s .

»

s

9 oT1dwexy

1716818 N4 (B-AVH- ‘3uva
Z =JZIS XVW & =3Z1IS NIW E1 =3ZIS dIVIS ADVUIAY
(L®320) E1 (Lewjoep) (] =3WIL LV 313TdW0D SI NNY NOILVINWI----

4 2

IREX X 035 493UNOD 3O QS| [QPBAPABILIFITIZITL 18YELY |

X |v0002 2]
4983S 9@ dwo) (6 g=NI NVI DAV S¥ 1-X3 NVJ DAV B2 ¥=NVd YAV 2 =321S XVH @ =3ZIS NIW £€°1 =3Z1S AIVIS| 9AV 21 21 =)
2K OV FUEBBRIVIBBEYI T RALOLL T iIX | 20802 1 1
1-83S 9 dwo] F6 H=NI NVI DAV BS° 1=XJ NVI SAV B2 ¥=NVd DAV 2 =321S XVH @ =3Z1S NIW =3Z1S AIvLiyg DAV 6 11 al
. LEUILIBRILIBLIB008 LLYVYEE B ¥31Invi222 | 15092 6 I
4-0¥3S @39 dwo] g8 P=NI NVI YAV 9S°T=XI NVI SAV FZ°v=NVd DAV 2 =2321S XVW @ =3Z21S NIW =3218 JOViS\9AV 8 an twl
LRI F A P | ' mP} Y
GXROPR OBIaSFUNCD 40 A1Q I|PPIW JIPBEFSTITITATIIALIT PB9ELY 1 SX 2892 S 4
A0e1S @3B dwWoD £8°PF=NI NVI YAV Yu 1=Xd NVI YAV B2 ¥=NV3 SAV 2 =3ZIS XVH t =3Z1S NIW 271 =3Z1S NOVLS DAV 9] =}
SX O3} TYPIIBTITILAGTINITT 18L8EL 1 *X 92892 r 2
GX O3 YPAAPABI119B8110008 QHLBE B EX Y19®2 € 1 ©
428§ 939 dwo) Fg-1=N3 NVJ DAV 1£°1=X1 NVI 9AV H2° 7=NV4 DAV 2 =3Z1S XVH 1 =2321S NIW 8°1 =3Z18 JNOVLS AV 9 -] ny
.. !
GRTEXTIXN O 4wqUNGD O QS| GOIPEOOATT IR 12608 QAYEE B ZX ro8e2 4 2 A
9XPyX O IBFUAOL 4O J1q I(PPIW JIAOBBLRTIIBIIIAIT BOVELY 1 X v2082 S 1
4283S @YD dWOI ZP°1=NI NVI DAV BV 'I=ald NV SAV B ¥=NVI DAV 2 <3218 XVA 1 =3ZIS NIW 8°1 «3Z15 NOVLS DAV ¢ 14 =l
G5 O3 [He@ABTIIABBYIBIIT 19.286L 1 EX vi1g82 £ 2
2X O3 1080111080181 898 BL8S & IX #9992 1 1
43€3S 930 dwo) Fo 1=NI NVJ DAV L9 T1=Kd NVI LAV B¢ v=NVd DAY 2 =371S XVW 1} =3ZIS NIW ¢°1 =3ZIS JAVLIS BAV E € =y
TIITIIa0I I8 V\oA88 LLVEE & ¥31I0viz22Z 15892 6 2
GROEXCTR CRi4vRUnOD JO QS| [AESEERTIIATTIANT 18¥EZ9 1 2X vagAz 2 1
4083y 9P| JdWOD MPT1sNI NVI DAV B 1=Xd NVU DAV e ¥ <NVJ 9AV 2 <JZ1S X¥W 1 :uw.w_hw:.m._ mﬂ-wn~m A2VLS u><dw Z wl
XD B e e T o
ZX OF JHPYIFIITIAIITINIT QHLTLL 1 i X {1]} ! !
4YNIS 03D dUOD YE PeNI NVI YAV FU°F-X1 NVI YAV G2 rsNV3 DAV 1 =3Z18 XVYW 1 =3ZIS NIW &1 =3Z15 JAVLS SAY I L L}
s .
-t W..x 1 deoquny uny , i . M
et .
mw nw 8=3 511 PUR Z=3 IV F O3 IX %2}3S 14S1T 110vd
mm) siLney @3ey moys {HOLVE
nm &4 03U puy’ 4ot 40X ION YL JERUNOD F1G-€ ¢ INIHIMIEASS
. : \ . ! ' ’
mw Ww~ BY:RH:BT 3WIL | Lg-¥VW-6 ‘3iVa wps NOTLVINWI JILSONIVIQ se»
. ! ; _ .
2 = |
(o)

]
foy “
: i

) e i

L o1dwexg

2y
R
8=
o B2
=4
2
Z Q
S &
> - PIITIINT SONIL Z8-UVH-6 13iV0
©o v =3Z1S XVW [=321S NIW L°2 . #3Z1S JNIVIS IAIVUIAY
) g]] g g)]) 28 J '} 4 g g g 1 4
~ew-dung 24035 {€I0V--~-- L w] $80.4pPY
So02BL PELPLY BOFIGY BBIVAC IVEBHL BULYSY LBOVEY BBEVAC BOBRB. BEBYPY BBOB1S BRABIE IBBSsL BEFYEL BRAIES BREIHL 891
cme—dWing 94035 U} CH-=--=~ £ L o) nuo..vvt
'] £269 125182 LLE2S9 nno!ws SLLLLL W22

2 g 2 N J a €av SeEr]
—QQNM—'—MGNNWMN—MNMMNmMN mmnnmnmmhmns &h&mmn hh

tisydo) ¢

LEDAYY NmN~<v BEYYZL 1YY

aYVYYY esLL & WASESL gz .
mcee-dung 3403§ (O4JUO]~==- { N B =) l! ¢9$£‘

(1ew}2ap) ¢ =3INIL ¥ u*wu‘zvﬂmn_ :as_:o.rtaazuaauw

BURBBL HPBB1Y QBEIBY POFINC POOEBL HPPBIEY BBUYIY BBEVYEZ

BRBREL PPBPID BAYYAY BBAHBAC PRBOHL BEBIDS BBEVEY BRDYRZ

B0PYL SBAVE9 APVB1S APAAIE

2BBBBL BEBYEO FBLBIS BVPBIE

= sod _Eveu—ws. sw =20} L..:.:DQ .
audvge FuasL nnw«n

PE898L Eun:...,\uﬁno o

mme-dUing 94035 U|EH-~=- 9 0) u...-vx

%90 SNNVEL llﬂth nnuunh 291
—ew=dlinng 94035 U} BH--~-~ §

]
G680 J
— 4/ a
gz) =dntea PaIiil Av
cpiwdw 3 PaIFIL 3N wo 0w} ?
bay1S BABBIL UPBIBL nnn'nu un I'ral

23084 BALS BUSIATID a2z nn:a azcu:c n&cs ey
h\ Q\ ---dung 94035 U} Ep--~- S58JPPY
PEEBBL PAPH1Y LUIIFY BFEIB2 u&cxaN BBYYHS n<n¢ ad9gvezl] 008B8. 88BPHS £BIB1S S0OBIL OAEIHL BANVEL PENIIS QNhN.n I 7'}
..cc...nl:o 24035 U}Ep-~-~= € 3 SSOIPPY
SUSBYL BEIB1S GBUSAY BEUOEZ MOBBIL UBYYLS VEEYEY GEYYHZ BEPEEL BEEYEO BEEAIQ BRABIE ABANL nnichn -inuum -uuucs [[}
c-l-ns:a @403S UJCH---= 2 .a»;tv(
. Aha‘N' |0J—n> Aonys
=pIP =plwou :p3}IesU} a_:a; woy =Wl
naa.aw v u SVBBTE BHEYIBL unwcun uu { [} u 2aL #al
lAE g #4035 UjeH--~- $894pPPY

i i

94 sod jub sl ®A j =20} mﬁ =PI}
23BB8L ReBU1S Q&Cw&< &&t § Buu9 k&ceﬁé '3 XA

G

s wﬁ&ﬁ ,
EEXSRARY 1!

LQAE:Z :aa ;
$3LD a;oto: 331 PUS 3de8u) 11817 40v4
w siined Siouey ;n:n sHILVE

9 a..o-wo..h i EGLLO..A 1d Yy 4 Wndeod Koy .wxazi

BJ-¢<: -4 +31va eps NOLLVINWI DILSONDVIC gvs

RECI 8

P
! ! , .
_f. | |

g 9t1dwexy

7

o =}

.

NS

3 C

< 4

z 8

ME

) '®)
FO:AIIHY sINIL LB-YYN-6 3iva
S aJZIS XVH 1 w3Z1S NIW ?°2 =3218 AJVLS wc<¢u><

(L8320) 21 (Lswioep) g1 =3WIL LV ILIVINOD ST NOY NOILVINNI=----

EEL S

EEL LY

Xoe3s

%283§

EELEYS

PEL LY

¥ow

@584l 1E£°1=N3
®2%®J4) E£Z2°I=N3
8ov4t FE°1=N3
@J®J41L T1°1=N3
#o84) ELC°1=N3
828Jl G2 i=N3
20841 FGS°1=N3I

YU B<N3

NVJ
z‘u
NVd
NV 4
NVJ4
NV
NVd

NVJ

OAV €9° I=X3 NVJ DAV

9x*yX 03:ia3UNO05 joO
DAV ¥S° I=X3 NVI IAV

AV BL° 1=X3 NV4 9AV

9X*yX 0O} 4BJIUNOT 4O

AV 94°1=X3 NVJ DAV ¢

OAVY E8B°1=X3 NVJ IAV

9X*yX O3 : JeUNOL JO
JAY BS°12X3 NVI DAV
DAV B8 °c-<X1 NVJ 9AV

DAV MU M=Ad NV

AV W

IX O) PANARATIIABATITITI]L

S ¥=NVI JAV S

=3ZIS XVl 1

ILq SLPPIW 199088081 110L10808

B2 y=NVi OAV ¢

=321S XVW I

¢x O 1800081000111 908

B ¥=NVi DAV €

ALK

OAV €

=3Z1IS XVW 1

T SIPPIW FRPPEIBTTITLIBTIIIRTT
< =3Z1S Xvdh I

X O) JARABHLIIANBITINLTL

HC y=NV4

9AV ¢

=3ZIS XwW |

|
T SLPPIW poREReOITIIFLIIATT

#2°r=NVd

9AV 2

=3ZIS |XVH |

Ix 03 129EH111898Y 11088

< vaNvd

AV 2

=3Z1iS [Xv4 1

2% 0% gegEest T IIgaiIIlng

TV-NVL

OAV 1

-321S XVH 1

6S:60:91

I

so3eH8 puu* so* ch.ao: YIIA Je3UNOD 31Q-E

s3NIL

8eLBLL 1 IX gsmmz 1 1
=3ZIS NIN ¥°2 =321IS NIVLS DAY 6 o e
19v€c & " S¥. vZE8Z S 2 ©
=3ZIS NIW 1°2 =3Z1$ NIWLE OAV 8 ”n .t
. [a
19.8L @ 1x_ sewsz 1
=«3Z1S NIW 6°2 .un~w AIVLS 9AV £ Vi =4
B¥9EL9 1 L eX 2082 S 1
© =3ZIS NIW 8°1 =3ZI§ NIViS 9AV 9 9 -1
8aLdLL | D 1y sepse 1 1
=3ZIS NiW §°1 .m-ﬁ NIWIE AV S S -t
sdvdss 1 0 | 1 g vessz g 1
3215 z g°1 “AZIE NIWS AV Y | ¥ st
1 M 1 e aseez. 1 1
4- tisu Wt =321 go«r S 8AVE ¢ "l
I IR VTR _ IX @888z 1 1
“3ZIS NIW 41 =3ZI§ AIVLS 9AV 1 1 .l
Ltasaz W
s3nej oy 11817 LInvd

£L8-YVH-&

19D} ASP 82RJJ MOYS

s3liva

tINIH

iHOlve

wss NOILVIAW3 JILSONIVIO sss

381 09 jO0 -ou dnoreu g g

$35)(19 jo -ou (e)duixauj s
| g otdwexy *zysomiag 1
| (00L NO 3IVUL)IP®Iu}4d 54apeay Aty O} 53I|ASP JO PUR; susnn

| MO OF §OD}10YD Jujid JSEN-S3V|ASP PIORJIY JO PUd | nnnnn‘J
S22 dOwiy _» mn

Feo sawvy (o) —SWTT 3501]!._.L

(s)SOMI3 LBAJQIUI “4RIF 486 NOLIIP AINIAP | 1'set’

Aiuo ®3Ep [wb ®5npoad O} und PeIE)AeIqqQE 9y
jub Joj ej3ep INdINO [BUIGIX® Gy

Wb 403 uilp INdU P BRUIIIXS

Jub 40} Suuw}s1b3d |BUIIIXS B EF

3I2eY2S Uy sSuoPde Bujnpeyds 2y

W lwb 404 ®1}3 ILNEY [y
” S40QUNY uUnJ gy
(3283sd) SpJUOM Yuj| dJuney jo BuBBnqep g¢
£3INAINO | PUISIXS SE

2 19AS} ‘ow;l} eJB|pemIeIU| /E

1 19AL] ‘ou) a30ipomJezi| 9€

(19UYds pur £ I5e) &INdU| | BUHISIXS §E

®L34 INAINC e nbes OF 35| I|NEY (R)Ied g
s3iney AsJowsw ;0 Buyilji| PuU® uO}IJeSU} EE

2 A9p bujNe) jOo Bujenbue Zg

s3Lnhey ajeb jo Buijjy| pus uojjsesul (g

epow puiviavagiyk u} dunp Rde}s ¢

(U0 pPaAUINY @q OS|EB IsNW JOBIS)OZ|S NOBIS §2
SuUjii Wy g2

US| Sweu 8IjASp 22

[enka} wouay 3ndiano Bnqep 92

a?uan--ﬂi-nuin-u--nnnnnnn~

ORI'NAL PAGE IS
OF POOR QUALITY.

$321ASP 3O ui | pPRZ)I9qQEydie 62 ')
CIEP UOLIBUIWIIY §2 g'
L3ep uojloe doys g2 J: =
LULP U038 @83 am 22 I
S@N|BA INAINO peu] }op YIIM S8 AP |2 ']
SSNLBA INAINO Pl 4IPUN YT IM SO |ASP G241 8
“ . 61 1 '}
- {(Huid) shvaae pez)piyivul 81 1§ 9
_ eyep Bnqep (] |]
154 | SuojIdbeuucd g4t]
€38p Bngap uoyvz| (®)I4U} ST §)
: ; jwb 403 3Indujiyound 1 | '}
. ! i . €3ep uoj3IdOp peed E1 | 4
, ®493s jed0| Buyxdeyd .4 G]
b ! ! R ELIIIR R TY !)
- ! _ . Ajowow 4038 (€20 Flu} I
: i : Alowow 94036 ULBM Gl 9
; | | Aaouaw 84038 [OJIJUOD B4 8
: _ o du03s ujesw Buj joay> L i 9
; : @40Ys [UIFUOD Sujyoeyd 9 i 1
H _ C | ;84oe3}s bujNdoeyd S i 1
i | ssepdey 92} aap Bu|Rd8YD Yy i 1
: P A _ SL13 BupdeYd ¢ 8
' i Jwb ©3 3Indu} 8320 2 | 9
i]

" N . w SL IV BVBURE bevRRd

t

SUOYIJO U ad, ., (11) 494A4p Yooy 404 SJopeay (®IIIU) s
1

Wl . . N AR YT T
. LEVY BEYLBE (99°X1°40) ,BulRuisd ‘sussesppe (40| 82 | /18 T
; . ! . S0 | Aep WIBJY MOYS

6 ®oTduwexy

ORIGINAL PAGE IS
OE POOR QUALITY

S =3Z1IS XWVW 1

oo,

g,

mu,!.! .u:: ‘8- ¢<:-m 131y
| =3ZIS NIVLS IOVYIAY

=3Z1S NINW n.N

{1320 21 (L=W}39p) g1 =3WIL 1V 3137dN0D SI NOY NOILVIAWI -~~~
9L {88 9X EEHRZ 9 6 il =3WIL
B/EE 2X r@gnZ 2 6 I =3WI1
BHIEEL 9X t£88Z 9 8 a1 =3INIL
OBYEL 2X v@88Z 2 8 #1 =3INIL
B8 L 9K EEOPZ 9 L L <INIL
10780y CK vEBBZ 2 L L =3IW(L
LLIEE ¥ Ereez 9 9 9 =INIL
LbVELY ¢X vaRRZ 2 9 9 =3INIL
LLLEE 9X €£882 9] S =3INIL
9BLEE ZX vegez 2 5 S =3WIL
LLLEE SX E£#8Z 9 v v =3IN1L
PAVEE ZX veB9Z 2 y 4 =3IN1L
LLEE 9X EEOHZ 9 £ £ «3INIL
194849 X v@eRZ 2 £ £ =3IWIL
9LLEE 9% E££88Z 9 2 2 =3INIL
18vE/9 ¢X Y889z 2 F4 z =3INIL
9240 < mma« : =3WIL

2.] @ (1) 1) aJWIL

so3eb v:m.gc.gow.vc: YIim

P41 Wil

doywny uig

2 JOpEIY oI | AP

cu-JdVn-o - JLVQ

*\ 2§70k

®J ON Lnvid

11SI
4

23 3)00ds moys $HJ1VE

4°3unod 314-¢ +INIHOWN] LavuNe,

ssx NOILVINWI DILSONOVIQ sav

D - 9

- § grawefa | | L))
] "

ey Cnmsmm
: ']
m Jn gy [e

03 5331A0p 4G pPuUej

, ! 20s e :
: Q.U*.M ‘\M ‘\Q‘ \)o-“ow 8$3210yd U Jd 4850-5@D}ASD REIRIY ;oawno $
, - , i o3 doys | -
, SoyAZ f° souyy (9159013 |¥A4839) *dors 3aRYe 40| 3de Widg)
_ wn :

W ALuo maEp [Mb ednpoud 03} uUNJ Pe}e|ASIGR 13
, ' : " fwb 403 ®lwp INdING ‘LW > K¢
[wb 403} w3kp IndU} | BUJBIRR

[wb 40y ®43361604 [BUJIeYXE 6B L

IOBVYIS U} SUOJIW ns—ninjtat By

b 40 ®1) 4 B0

sJ0quNU unJd gy

(33%3s8d) spuom >uj| J433(ney jo BuiBBngep g¢
SINdIN0 [BUIOIX® §F

Z 19AG| ‘aw]} v pavaolvu] 4

. 1 19A| “Lwi3 938)pamwdeju} 9¢
(¥duYss puk £ 358, s3nduj | BUIIIX® GE

@143 INAdINO Je|NBaua 0} | Y| Ney (e} jsed ve
$3lnhe) Auouwsw jo Bujlyy| puR uoc}3Jaasuy EE
@24abp EButqney j0 Bujenbue 2¢

$3Lhey @3b jo Bujyy|L pue uojjusesu g

SpoW pPIV|ASIQQR U} dwnp IEYS PE

(UO PUINY -8q OK|B ISNW HOBIS)BZIE NOEIE §2
QUL swl) B2

IS | SWEBY 82| AGP L2

leAk iy wouss ndyno Bneep 92

$33143p 3O 51| peziYIOquuyd]e §2

CICD UO IRV WIS} 2

e8P UO)IO® doys £2

RIEP UOLII| @) 4M 22

SON|BA INAINO POU| JOP YIIM S@D|ASP [2Z

SINL VA INAINO pRU| JepUN Y IM 88D AGp g2,

- - 6

(1upd) sAwile pezjipiIIu} B

e3ep 6nqap 2

IS} | SUOIIIDUUOD 91,

B38p Bnqup uolIBZIIR}IIUL §
jwb Joy Induyp yound ¢

ejep UOLIOR peld £

@403c {udoy Bujyaeyd 2

v - R

1
1
i
1
1
1
!
1
!
ANliouwow 4038 |80} g1
A4oWIW 24035 uUjBE g

Adousw 94038 {043U02 g
Q@40L ujew Bupydeyd 2
PI0Ys [0IPU0D Buy yoayd 9
~4ow3s Bujydoayd [

Sdepuvy I AIPp Buindayd ¢
&1) Bujpydayo g

jwh o) 3nduj (e320 2
e (1) 921A9P Yoy 40y 340pwdY | BIILIU} T

"

ORIGINAL PAGE I8
OE POOR QUALITY.

suujIdo Juyud

" “ -

s
|
»
»
]
”
! |
]
|
|
|
]
]
1
1
1
9
]
L
]

L)
—

P1oARE" waBsd

* “ “ " LIY ¢ 3
LEVY'BIYLOH (90'X1°90) Bujjuiid "sesseJppe [y'o| $O | :&§,.
' $40PROY 32}A9p I}) 30ds MOyS

.-.-....-—.-———--—»-...—-.__mu----——-0—0-——--—..——--.-—h-m',imq.m-ﬁ-—g_ﬁo--

45835

A9¥3s

EEA X 3

4ouy

A I

39| dwo)

39| dwo)

@39 | dwo)

83| dwo)

%9 wug

939 | Jwo)

3@ | dwo)

e | Jwo)

1E°1=N3

£2°1=N3

JE* 1=N3

11°1=N3

Te'i=Nd

IGINAL PAGE 1S
OF PGOR QUALITY

~7

G

gat-Nd

gy 1-

N3

3

&

i

NVd

NVd

NV

NVJ

NVJ

NVd

NVd

NVd4

NVd

01 otduwexy

9 =3Z1S XyW 1

300
(93) Nﬂuw\

4 1IN TI L

gx 03 SITIIVIIIOOPIININD
Sx 0% JOPNPNI 11080 1998D

ZX O3 PHAAABIIIENPITITIINT

9AV €9°12X3 NVJd YAV 82 v=NV4 DAV § =3Z1S XYW

9XTEX' X 03:I03UNOD JO Q| FAHIABEHI 1101188808

99X yX 0 148JUNCD 40 31q PIPPIW 19908PIA1LINIILERR
LX ©3I3493UNGD O qQSW FOPPAFIBITIFIIIALT

OAY 757 I=X3 NV4 LAV G2 °¥=NVd DAV E =321S XVW I

8X O3 JRPAYALIIHABIISILI
§X O 18POPQITITIABATIBILL

X O3 19000311 1080111009
AV A2 1=X1 NVUI AV MZ'YeNVJ YAV E «3Z1IS XVH 1

IATLA T~ 0 JeUNOD 30 aS| [YoPeBAIITIBITIIL
VayX VG duIuNeL Ju 41 eipplw DULLIBOALLIINTL LTI
DAV 997 1-XKJ NVJ UAV ¥l Y-NVd YAV £ =3ZIS XVW 1

5% O 12@PLT1IP8BTIVATT]
94 9% JIVYYS LY 1VYOT I UDUG
SKOOF YOPOBBNTIBBATITIT
OAV E4° 12X3 NVU LAV B2 7=NVd SAY £ =3Z1S XVW 1|

A
PI 4

LAt e O ag Union

URe OPUNOL o

Je 9S8 Pyugudpud 1 11T IveBY
htd wLPPlW JIdBBOBBI LIBTITYL

JAV 37 1=X3 NV4 SAV J¢°v=NVd DAY 2 =3Z1S XVW 1
GX 0% LISDOUT L ERBTIAILY

CAOY LMEUOBL L\ DBB LT LAY

DAV MU~ C-RT Ny LAY LTy =NV DAV C ~4Z1S XViH 1
GATLAT LA Wl duiuned o Qs [gggEgERI 1 IFTIIATT

IAV BB°1=X3 NVJ LAV H4o ¥=NVE HAV 1 =3Z1S Xvh 1

7

L

1 .

#

s

ZX 0% AEAIBBIVINBBVINI L. BBLTLL 1
u><§ X3 NV3 UAV e.zi 9AV, =3Z1S Xv m

(Lew}o9p) g1

£

=3Z1S NIW ¥°2

3

TV TRRE * TRV PYE-y

=3WIL LV 31374W00 §I NAY

(24N

¥

9LL8E B
o9LBE 8
asLRLL 1
=3ZIS NIW

sBYEE &

19YEE §

8ovEL9 1
«3Z1S NIW

aeLBEL 1

19.8€L |

18L8L &
=321S NIW

18veL9 1
gP9IELY 1
<3218 NIRW

ToivgL 1

ByLBE B

ogLBLL Y
=3ZIS NN

parce g
BAYVELY 1
=3Z1S NIW

19:800 1
188 B

=321S NINW

18YEL9 1

ruN—M NIW

=3Z1S NINW

LeJE:z uny

|

G e
T ek vissz
R L N [Tt
Y°Z =3IZIR NIVER DAY &
T e e esez
o ax vzeez
8X E£v992
1°2 =3Z1% NOVLS 9AV 8
9X £E#8z
€EX viso2
CIX sseez
2 =3Z1S AIVLS OAY £
2X veem2
SX v2882
81 =3ZIS AIVLS DAV 9
X p2oal
EX v1882
IX #9082
81 =3ZI$ NIVLS DAV §
X veenZ
X ve2eae
g 1 =3ZIS NIVLS SAV ¥
EX v1802
IX po082
£ 1 =3Z1S AIVLS DAV £
ZX 188z
g1 =3Z18 JAIVLS DAV 2
IX 2094
e =321S JOVLS AV
3108, o

@pOW | LR4 Ul %IE3IS MOyYS

#3218 Navis VNN
NOLLVIANI -~~~

VN -
2 €
S e
e L
s
3 €
£ z o8
1 1
¢ 1!
(=)
z 2
] 1
3 -1
v £
£ z
1 1
s -1
2 2
s 1
v -y
£ 2
1 1
£ =1
z 1
2 =l
al

$4S17 10V

iHO1vVE

0385 puB’ 10’ VX IOU UM JOIUNOD 31Q-E +INIHIVH;ANDNYL
143

IV:01:81 <3Wls

L8-YVH-6

:3.va

e 2

svs NOILVINWI JILSONIVIA we»

B

Appendix E

Terms and Abbreviations

Terms and Abbreviations

Iy

ms

device
simple gate, or regular gate
device name

device index number

device address

device identifier

stack

Abbreviations

ei
eo
cs
ms
*filename

General Notes

A gate, flip~flop or tri-state.

An AND,OR,NAND,NOR,XOR, or NXOR gate.

A 20-character name assigned by the user to the
device

An integer assigned to each device by the
initialization program. The first device in
the netlist is assigned the number 1, and
integers are then assigned sequentially to the
remaining devices in the order in which they
appear in the netlist.

The beginning QM-1 control store location
assigned by the initialization program to hold
the state description or "header word" (see ())
for the device.

For the Vax: the device index number

For the QM-1: the device address.

A list of device index numbers(for vax
emulator) or device addresses(for QM-1
emulator) of those devices whose output values
changed during the previous time step.

external inputs

external outputs

control store

main store

User Prefix followed by rest of file name

Device Names The user must enter a device name in Upper Case in every
instance in which it appears in any input file.

Fortran Formats It is assumed in the descriptions of the input files to the
emulator programs that the user is familiar with Fortran
Format statements.)

Radix Notation All numbers in this document are assumed to be decimal,
unless the radix is specifically noted, for example,

"octal".

Report Documentation Page

Nateonal Aeronautcs and

Space Agmwstiation
1. Report No. 2. Government Accession Noj 3. Recipient’s Catalog No.
NASA CR-178391
4, Title and Subtitle 5. Report Date
Diagnostic Emulation: December 1987

Implementation and User's Guide & Performing Organization Code

7. Authorls) . 8. Performing Organization Report No.

Bernice Becher

10. Work Unit No.

9. Performing Organization Name and Address 505-66-21-03
PRC Kentron, Inc. 11. Contract or Grant No.
Hampton, VA 23666 . NAST-18000

13. Type of Report and Period Covered

12. S ing A Name and Address
2- Sponsoring Agency Contractor Report

National Aeronautics and Space Administration 14, Sponsoring Agency Code
Washington, DC 20546-0001

15. Supplementary Notes

16. Abstract

The Diagnostic Emulation Technique was developed within the System Validation
Methods Branch as a part of the development of methods for the analysis of the

" reliability of highly reliable, fault tolerant digital avionics systems. This
is a general technique which allows for the emulation of a digital hardware
system. The technique is general in the sense that it is completely independent
of the particular target hardware which is being emulated. Parts of the system
are described and emulated at the logic or gate level, while other parts of the
system are described and emulated at the functional level. This algorithm
allows for the insertion of faults into the system, and for the observation of
the response of the system to these faults. This allows for controlled and
accelerated testing of system reaction to hardware failures in the target
machine. This document describes in detail how the algorithm was implemented at
NASA Langley Research Center and gives instructions for using the system.

17. Key Words {Suggested by Author(s)) 18. Distribution Statement

Fault tolerance Unclassified - Unlimited
fault simulation

logic simulation
Subject Catetory 66

19. Security Classif. (of this report} 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified Unclassified 172 A08

NASA FORM 1628 OCT 86

